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Abstract
Co-part segmentation is an important problem
in computer vision for its rich applications. We
propose an unsupervised learning approach for
co-part segmentation from images. For the train-
ing stage, we leverage motion information em-
bedded in videos and explicitly extract latent rep-
resentations to segment meaningful object parts.
More importantly, we introduce a dual proce-
dure of part-assembly to form a closed loop
with part-segmentation, enabling an effective self-
supervision. We demonstrate the effectiveness of
our approach with a host of extensive experiments,
ranging from human bodies, hands, quadruped,
and robot arms. We show that our approach can
achieve meaningful and compact part segmenta-
tion, outperforming state-of-the-art approaches on
diverse benchmarks.

1. Introduction
Part-structure provides a compact and meaningful interme-
diate shape representation of articulated objects. Co-part
segmentation, which aims to label semantic part belonging
for each pixel of the objects in an image, is an important
problem in computer vision. Such capability can directly
serve various higher-level tasks such as marker-less motion
tracking, action recognition and prediction, robot manipula-
tion, and human-machine interaction.

With the advent of deep learning, and the availability of large
amount of annotated motion datasets, supervised learning-
based approaches have led to superior performances over
traditional part segmentation methods; the most success
has been achieved for human pose estimation, e.g., (Güler
et al., 2018; Kanazawa et al., 2018). However, this approach
assumes significant domain knowledge, and highly depends
on the specific dataset used for training, thus making it
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difficult to generalize to objects with different appearance,
lighting or pose, not to mention unseen subjects.

A video sequence is viewed as a spatio-temporal intensity
volume that contains all structural and motion information
of the action, including poses of the subject at any time as
well as the dynamic transitions between the poses. Our goal
in this research is to extract a general part-based representa-
tion from videos. Compared with single image-based seg-
mentation, our work intends to aggregate shape correlation
information from multiple images to improve the segmen-
tation of individual images. The capability of consistently
detecting object parts are important for motion tracking of
creatures of various topology, and ultimately extracting their
skeletal structures.

A successful line of recent works in this direction formulates
the task as an image generation problem, where segmented
parts are globally warped to form the final image. There,
part-segmentation becomes the essential intermediate step,
because: the better you can segment (parts), the better you
can generate (the image). In this paper, we follow the same
image-generation concept, but introduce a dual procedure of
part-assembly to form a closed loop with part-segmentation,
which ensures more consistent, also more compact and
meaningful part segmentation. Specifically, we generate
the final image through blending each part’s warped image,
instead of a global image warping. In essence, our image
based assembly operation effectively constrains the mani-
fold of each individual part, resulting in improved results.

We take an unsupervised learning approach. Like many
recent works about unsupervised / self-supervised part seg-
mentation, we believe shape correlation information be-
tween different frames can be leveraged for achieving se-
mantic consistency. Our approach is similar to PSD (Xu
et al., 2019), Motion Co-part (Lathuilière et al., 2020) and
Flow Capsule (Sabour et al., 2020), in the use of motion
cues embedded in different frames for co-part segmentation.
We go beyond the existing techniques in multiple ways:

(1) In our method, the supervision is attained by introducing
a novel dual-procedure of part-assembly to form a close
loop with part-segmentation.

(2) The learned parts and their transformation have clear
explainable physical meaning.
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(3) Our method doesn’t require any field-based global warp-
ing operation, which enables handling dramatically dy-
namic motions.

We demonstrate the advantages of our method both visually
and quantitatively. Extensive experiments have been con-
ducted on datasets showcasing challenges due to the change
in appearance, occlusions, scale and background. We also
compared with recent works including NEM (Greff et al.,
2017), R-NEM (Steenkiste et al., 2018), PSD (Xu et al.,
2019), SCOPS (Hung et al., 2019), Motion Co-part (Lath-
uilière et al., 2020) and Flow Capsule (Sabour et al., 2020).
Our method outperforms state-of-the-art methods in quanti-
tative evaluation.

2. Related work
Part-based Representation In analyzing images, de-
scribing object as a collection of parts, each with a range
of possible states, is a classical framework for learning an
object representation in computer vision (Ross & Zemel,
2006; Nguyen et al., 2013). The states can be computed
based on different evidences, such as visual and semantic
features (Wang & Yuille, 2015), geometric shape and its be-
havior under viewpoint changes (Eslami & Williams, 2012)
and object articulation (Sun & Savarese, 2011), resulting
in a large variation of part partition. Our work performs
motion-based part segmentation, where each part is consti-
tuted with a group of pixels moving together.

Motion-based Co-part Segmentation Motion-based Co-
part segmentation has been an important problem in under-
standing and reconstructing dynamic scenes. Articulated
object can be naturally segmented as a group of rigid parts,
if prior knowledge on underlying kinematic structure is
known. However, this assumption does not hold in our
problem setting. Most of the traditional computer vision
technology recovers rigid part and kinematic structure by
exploiting motion information, in particular, RGB image
sequences with feature points tracked over time. There
have been three main approaches: (i) motion segmentation
and factorization (Yan & Pollefeys, 2008), (ii) probabilis-
tic graphical model (Ross et al., 2010; Sturm et al., 2011),
and (iii) cost function based optimization methods (Ochs
et al., 2014; Keuper et al., 2015). The work from Chang and
Demiris (Chang & Demiris, 2018) achieved state-of-the-art
performance on the reconstruction of articulated structures
from 2D image sequences. There, the segmentation was
executed on tracked key-points, rather than all pixels like in
our approach; the method, however, is prone to image noise,
occlusions, deformations and cannot deal with articulated
structures of high complexity.

Unsupervised Co-part Segmentation With the popular-
ity of deep neural networks, motion part segmentation has
achieved superior performance in domains where labeled
data are abundant, such as faces (Khan et al., 2015) and
human bodies (Güler et al., 2018; Kanazawa et al., 2018).
Parts segmentation can also be learned in an entirely unsu-
pervised fashion. Nonnegative Matrix Factorization (NMF)
(Lee & Seung, 1999) learned features that exhibit sparse
part-based representation of data to disentangle the hidden
structure of data. (Collins et al., 2018) further proposed
deep feature factorization (DFF) to estimate the common
part segments in images through NMF. Leveraging on se-
mantic consistency in an image collection of single object
category, Hung et. al. (Hung et al., 2019) proposed a self-
supervised network SCOPS to predict part segmentation
based on the pre-trained CNN features. (Xu et al., 2019)
proposed a deep model to discover object parts and the as-
sociated hierarchical structure and dynamical model from
unlabeled videos. However, they assume that pre-computed
motion information is available. (Lathuilière et al., 2020)
proposed a model to leverage motion information with the
purpose of obtaining segments that correspond to group
of pixels associated to object parts moving together. But
the transformation between parts in different frame is not
explainable, and the motion merge to flow rather than on
each part. (Sabour et al., 2020) proposed exploit motion
as a powerful perceptual cue for part definition, using an
expressive decoder for part generation and layered image
formation with occlusion. But they still rely on flow to warp
image, instead of considering that each part has independent
motion.

3. Method
Our goal is to train a deep neural network to compute part
segmentations and estimate part motions from a single input
image. We train our network using an image collection
of the same object category, which can be extracted from
videos of an animating object. Our unsupervised training
process guides the network to identify object parts in the
images by observing their motions. To facilitate the train-
ing, we assemble the generated parts to recover the input
images, which can be considered a dual-procedure of part
segmentation. In what follows, we will first introduce our
segmentation model in detail, then discuss the objectives
and the training process.

3.1. Model

Our part segmentation network consists of an image encoder
network and a segment decoder network. The image encoder
encodes a given image into a set of latent feature maps, each
corresponding to an object part. The segment decoder then
decodes these part feature maps into part segments, which
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Figure 1. Architecture. Our segmentation network consists of three major components. Left: The Image Encoder takes an image I as
input and outputs latent feature maps {Vk} and part transformations {Tk} of every part. Middle: The Segment Decoder converts each
feature map Vk into a part image Pk and a corresponding depth map Dk. Right: During the Part Assembly procedure, the depth maps
{Dk} are converted into part masks {Mk}. The masked part images {Ĩk} are then assembled to generate a reconstructed image Ĩ .

are later assembled to reconstruct the input image. Figure 1
provides an overview of the proposed network structure.

Image Encoder Given an image I ∈ RH×W×C as input,
the image encoder, E , computes latent representations of
K part segments, each represented by a feature map, Vk ∈
RH′×W ′×C′

, where k ∈ K and K = {1, . . . ,K} is the
set of part indices. These latent feature maps implicitly
capture the shapes, appearances, locations, and poses of
the corresponding part segments in the input image. We
treat the background region as a special part segment and
represent the corresponding feature map as V0.

The encoder also estimates a set of affine transformations,
{Tk}, for each part k ∈ K. We assume there exists a set of
canonical parts located at the center of the image, which are
shared by all the images and can be transformed by {Tk} to
match the current parts in the input image. We use V ∗k to
represent the feature map of a canonical part.

In our implementation, a transformation, T , is given by a
6-tuple

T = (sx, sy, sθ, cθ, tx, ty) (1)

where (sx, sy) and (tx, ty) represent the scaling and the
translation of the transformation. To avoid the continuity
issue of angle representations (Zhou et al., 2019), we use two
variables (sθ, cθ) to represent a rotation θ, which correspond
to the sine and cosine of θ respectively. The transformation
matrix of T is then given by

T =

[
A t
0 1

]
(2)

where

A =

[
c̄θ −s̄θ
s̄θ c̄θ

] [
sx 0
0 sy

]
, t =

[
tx
ty

]
and (s̄θ, c̄θ) = (sθ, cθ)/ ‖ (sθ, cθ) ‖2.

Segment Decoder The segment decoder network, D, is
trained to convert a latent feature map Vk into a part image,

Pk ∈ RH×W×C , which recovers the appearance of the part
in the original image.

We use the same decoder networkD to convert feature maps
of all the object parts and the background into part images.
The decoderD also outputs a depth map, Dk ∈ RH×W , for
each part. With u representing the coordinates of a pixel,
Dk(u) is a scalar that specifies the relative inverse depth
of the corresponding pixel located at u in part image Pk.
We assume that the object is composed of opaque parts, so
that a part with smaller inverse depth (thus farther from the
camera) will be partially occlude by the parts with larger
inverse depth. The part mask Mk ∈ RH×W is thus a pixel-
wise visibility mask indicating whether a pixel in the part
image Pk is visible in the original image, which can be
computed as

Mk(u) = softmax
l∈{0}∪K

Dl(u) (3)

Part Assembly We train the segmentation network by
assembling the part images together and reconstructing the
input image. This is achieved by gathering the visible pixels
from all the part images. Specifically, the reconstructed
image Ĩ is computed as Ĩ =

∑K
k=0 Ĩk where Ĩk is the

visible part of part image Pk as specified by the part mask
Mk. We compute Ĩk using Ĩk = Mk � Pk, where � is the
Hadamard (pixel-wise) product between two arrays.

3.2. Training

We train our co-part segmentation network using image pairs
randomly selected from the input image collection. During
training, we require the network to reconstruct one image
of a pair (the source image, Is) as accurate as possible,
while using the other image of the pair (the target image,
It) to cross-validate the latent representation of the parts
and the segmentation results. This validation is performed
by constructing the target image using the part segments
extracted from the source image. Unlike the existing works
that warp the source image using optical flow (Siarohin
et al., 2019; 2020; Sabour et al., 2020), we transform the
parts in latent space directly and decode the transformed
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Figure 2. Training Process. We train our segmentation network in an end-to-end fashion. Left: The encoder E converts both the source
image Is and the target image It into latent feature maps and estimates part transformations. Middle: The source latent feature maps V s

k

is inversely transformed into the canonical feature map V ∗k using the source transformation T s
k . V ∗k is then transformed using T s

k and the
target transformation T t

k, producing a recovered feature map Ṽ s
k and a retargeted feature map Ṽ s→t

k respectively. Right: The decoder
D assembles the resulting {Ṽ s

k } and {Ṽ s→t
k } and generates a reconstructed source image Ĩs and a retargeted image Ĩs→t respectively.

Those generated images are then compared with the input to compute losses.

latent features of the parts to generate the target image.

Figure 2 provides an overview of this training process. In
more details, the encoder network E takes the two images
Is and It as input and computes latent feature maps and
part transformations for both of them. The results are de-
noted as {V s0 , (V sk , T sk )} and {V t0 , (V tk , T tk)} respectively.
We transform each source latent feature map V sk using the
corresponding transformations T sk and T tk, and assemble
the resulting latent maps {Ṽ s→t0 , Ṽ s→tk } using the segment
decoder D to produce the retargeted image Ĩs→t. Note that
we assume the background is static and use Ṽ s→t0 = V s0 in
this transformation.

This retargeting is performed in two steps. First, we in-
versely transform V sk using T sk to compute the canonical
latent feature map V ∗k = (T sk )−1 ◦ V sk , which is assumed to
be shared by both the source and the target. The transforma-
tion operation ◦ is defined as

(T ◦ V )(u) = V (T−1u) (4)

where u and its transformed counterpart T−1u are both
coordinates of pixels. Then the target transformation T tk
is applied to V ∗k to compute the retargeted feature map
Ṽ s→tk = T tk ◦ V ∗k = [T tk(T sk )−1] ◦ V ∗k . We also recover the
source feature map from V ∗k as Ṽ sk = T sk ◦ V ∗k . We find this
additional procedure helpful in facilitating the training at
the early stage of the process.

The resulting feature maps {Ṽ s0 , Ṽ sk } and {Ṽ s→t0 , Ṽ s→tk }
are then input to the decoder D to assemble the recon-
structed image Ĩs and the retargeted images Ĩs→t respec-
tively. In the meanwhile, the corresponding part masks
{M̃s

k}, {M̃s→t
k }, and {M∗k}, computed using D and Equa-

tion (3), are recorded as well, which are used as a part of the
training objective as described below. We train our segmen-

tation network in an end-to-end fashion with an objective
formulated as a weighted sum of several losses.

Image Reconstruction Loss The main driving loss of
our training is the image reconstruction loss, which penal-
izes the difference between the generated images and the
corresponding inputs. The difference between images is
measured based on the perceptual loss of (Johnson et al.,
2016), where a pretrained VGG-19 network (Simonyan &
Zisserman, 2015) is used to extract features from the images
for comparison. The difference between two images I and
Ĩ is then computed as

L(I, Ĩ) = λ1 ‖ I − Ĩ ‖1 +λ2 ‖ ∇I −∇Ĩ ‖1
+ λ3 ‖ φvgg(I)− φvgg(Ĩ) ‖1

(5)

where∇· computes image gradient as suggested by (Eigen
& Fergus, 2015), and φvgg(·) extracts VGG-19 features from
the image. The reconstruction loss is applied to both the
reconstructed source image Ĩs and the regargeted image
Ĩs→t. The total loss is thus

Lrec = λsL(Is, Ĩs) + λtL(It, Ĩs→t) (6)

Background Loss As described in the last section, we
treat the background as a special part segment and compute
its features map and part mask. In practice, however, we
observe that some background pixels can appear in the other
part masks, causing noisy part segmentation. To address
this problem, we include a novel background loss in the
training to encourage clear partition between the object
parts and the background. This is achieved by encouraging
the background part to occupy as much image as possible,
forcing the object parts to shrink into the most relevant
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Figure 3. Visual results of our method tested on different scenarios, including human, hand, quadruped and robot arm.

region in the image. The background loss is thus defined as

Lbg = λbg

(
‖M0 − 1 ‖1 +

K∑
k=1

‖Mk ‖1

)
(7)

which drives the values of the background mask close to
one and the values of the other part masks close to zero. We
apply this background loss to both the source parts Ms

k and
the retargeted parts Ms→t

k . We find this loss essential for
precise part segmentation with tight boundaries.

Transformation Loss In our system, we expect each part
transformation Tk to be strongly correlated with the absolute
pose of the part k in the input image and thus has a clearly
explainable physical meaning. More specifically, each part
transformation Tk = [Ak|tk] defines a coordinate system
with the origin at tk and the axes defined by Ak. We assume
tk to be located at the center of the part k and the axis Ak
align with the longest and the shortest dimensions of the
object part. We enforce such property in the training using
a novel transformation loss defined as Ltrf = Ltran + Lrots,
where

Ltran = λtran

K∑
k=1

‖ tk − ûk ‖1 (8)

Lrots = λrots

K∑
k=1

‖ AkATk − Σk ‖F (9)

Since we do not have the ground-truth part poses, we esti-
mate the reference transformation using the mean and the
covariance of the part mask Mk as

ûk =
1

zk

∑
u∈U

uMk(u) (10)

Σk =
1

zk

∑
u∈U

(u− ûk)(u− ûk)TMk(u) (11)

where Mk(u) represents the mask value of the pixel lo-
cated at u ∈ U and zk =

∑
u∈UMk(u) is a normalization

constant. In this estimation, we only consider the pixels
that have been clearly identified as part k with a threshold
ζ, so that U = {u|Mk(u) > ζ}. We choose ζ = 0.02
empirically in our implementation.

Equivariance Loss The estimation of the part transfor-
mations should be consistent across images and show equiv-
ariance to image transformations. Following the common
practice of unsupervised landmark detection (Jakab et al.,
2018; Zhang et al., 2018; Siarohin et al., 2019), we employ
an equivariance loss in our training. Specifically, we trans-
form the input image I using a random transformation Tw.
The encoder E then estimates part transformations for both
the original image I and the transformed image Iw. The
equivariance loss is then defined as

Leq = λeq

K∑
k=1

‖ TwTk − Twk ‖1 (12)

where Tk and Twk are the part transformations estimated
from I and Iw respectively, and the 1-norm is computed
with the transformation matrix treated as a vector.

Concentration Loss To encourage the pixels belonging
to the same object part to form a connected and concentrated
component, we employ the geometry concentration loss
suggested in SCOPS (Hung et al., 2019) to regularize the
shape of part mask Mk. Specially, this concentration loss is
computed as

Lcon = λcon

K∑
k=1

∑
u

‖ u− ūk ‖22 ·Mk(u)/zk (13)

where
ūk =

1

zk

∑
u

uMk(u) (14)

is the center of gravity of the part mask Mk, and zk =∑
uMk(u) is a normalization constant. Unlike the trans-

formation loss, we consider all the pixels in Mk in this con-
centration loss. Note that the summation of Equation (13)
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Figure 4. Visualization of the segmentation results. Left: The input image. Middle: The part images computed by our segment decoder.
Right: The reconstructed image computed by part assembly.

excludes the part mask corresponding to the background.
As shown in Fig. 2, we apply concentration loss to the part
masks of the source parts Ms

k , the retargeted parts Ms→t
k ,

and the canonical parts M∗k .

4. Experiments
Our model is implemented using the the standard U-Net
architecture. We include the details about the network struc-
ture and the training settings in the supplementary materials.
We visually demonstrate the effectiveness of our co-part
segmentation method on several test cases with large vari-
ation, including human, hand, quadruped, and robot arms
in Figure 3, where the resulting part segments are rendered
with different colors with the corresponding masks com-
puted using hardmax Mk(u) = maxl∈0∪KDl(u) instead
of Equation (3). Additionally, Figure 4 illustrates the indi-
vidual segment images computed by our network.

Our method is designed to extract parts that exhibit different
affine transformations in the training image pairs, which
is consistent with the behavior of semantically meaningful
segmentation of a subject, such as a human body. The order
of these parts is not determined in the unsupervised learning
process. As in previous works, we manually label those
parts after the model training. Notably, we only need to
label the parts once, and the labels are consistent over all
test images.

In the rest part of this section, we will introduce the ablation
studies we performed to analyze the effectiveness of each
loss component in our framework, and also the comparison
with state-of-the-art co-part segmentation techniques.

4.1. Datasets

Tai-Chi-HD. Tai-Chi-HD dataset (Siarohin et al., 2019)
is a collection of short videos with full-body Tai-Chi
movements. 2981 Tai-Chi videos were downloaded from
YouTube. The videos were cropped and resized to a fixed
resolution of 128× 128, while preserving the aspect ratio.
There are 2746 training videos and 235 test videos. This

Table 1. The quantitative evaluation on the validation set of Tai-
Chi-HD and VoxCeleb. The evaluation metrics are the foreground
IOU and landmark regression MAE.

Dataset Metric SCOPS Motion Ours
Co-part

Tai-Chi-HD Landmark 411.38 389.78 326.82
IoU 0.5485 0.7686 0.8724

VoxCeleb Landmark 663.04 424.96 338.98
IoU 0.5045 0.9135 0.9270

Table 2. The quantitative evaluation on the validation set of Exer-
cise. The evaluation metric is the part segment IoU.

Part REM N-REM PSD Flow Ours
Capsule

Full 0.298 0.321 0.697 - 0.793
Upper 0.347 0.319 0.574 0.690 0.759
Arm 0.125 0.220 0.391 - 0.465

Leg(L) 0.264 0.294 0.374 0.590 0.726
Leg(R) 0.222 0.228 0.336 0.540 0.642
Average 0.251 0.276 0.474 - 0.677

dataset contains 5300 images with ground truth landmarks
(18 joints) generated using the method from Cao et al.(Cao
et al., 2019). Only 300 images with ground truth foreground
segmentation mask are available.

VoxCeleb. The VoxCeleb dataset (Nagrani et al., 2017) is
a large scale face dataset, which consists of 22496 videos,
extracted from YouTube. We follow the preprocessing de-
scribed in (Siarohin et al., 2019) to crop original video
into several short sequences to guarantee that face can move
freely in the image space with reasonable scale. All the
cropped videos are then resized to 128 × 128, again, pre-
serving the aspect ratio. After the preprocessing, our dataset
contains 15103 training videos and 443 test videos. The
length of each video varies from 64 to 1024 frames. This
dataset contains 5300 images with ground truth landmarks
(68 keypoints) generated using the method from Bulat et
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Figure 5. Visual result in Tai-Chi-HD. Motion Co-part and our method both produce relatively better and consistent part segmentation
than SCOPS. Our segmentation are more compact and tightly aligned with image silhouette.

Figure 6. Visual result on VoxCeleb. All of the three methods produce consistent part segments, but our segmentation are more compact
and tightly aligned with the image silhouette.

al.(Bulat & Tzimiropoulos, 2017). Similarly, only 300 im-
ages with ground truth foreground segmentation mask are
available.

Exercise. Exercise dataset is a collection of paired images
from two consecutive frames for full human body perform-
ing Yoga exercises. This dataset is originally collected by
(Xue et al., 2016) from YouTube, and preprocessed with
motion stabilization. We use the reorganized version of this
dataset provided by (Xu et al., 2019), which contains 49356
pairs of images for training. For this dataset, only 30 images
with ground truth part segmentation masks are available.

4.2. Metrics

Intersection Over Union We use the commonly adopted
mean intersection over union (IoU) metric to evaluate how
similar our predicted segmentation is to the ground truth.
The average IoU across all frames of the dataset is practi-
cally used. We use foreground IoU for the test on VoxCeleb
and Tai-Chi-HD datasets due to the shortage of ground-truth
part segmentation mask; while part IoU is used for the test
on Exercise dataset.

Landmark Regression MAE We use the landmark re-
gression MAE metric to evaluate whether our method can
generate consistent semantic part segmentation on different

images. Following (Hung et al., 2019), We first fit a lin-
ear regression model from the parts’ center of mass ūk to
ground truth landmarks using 5000 annotated images, where
ūk is calculated using Equation 14, and then on the other
300 images, we compute the mean average error (MAE)
between regressed and ground truth landmark positions as
the evaluation metric.

4.3. Quantitative Comparison

We quantitatively compare our result with that of the state
of the art methods for co-part segmentation, SCOPS (Hung
et al., 2019), Motion Co-part (Siarohin et al., 2020),
PSD (Xu et al., 2019), NEM (Greff et al., 2017), N-
REM (Steenkiste et al., 2018) and Flow Capsules (Sabour
et al., 2020), using both IoU and Landmark metrics.

We first compared our method with SCOPS and Motion Co-
part using landmark regression and foreground IoU metrics
on VoxCeleb and Tai-Chi-HD dataset, which have rich vari-
ation on background texture, actor’s appearance and body
proportions, etc. To make a fair comparison, we train our
model with K = 10 in this test, which is consistent with the
settings of the other methods. The results in Table 1 indicate
that our method significantly improves the accuracy of fore-
ground segmentation and can achieve more consistent and
precise segmentation. As illustrated in Figures 5 and 6, our
approach achieves more consistent part segmentation than



Unsupervised Co-part Segmentation through Assembly

Figure 7. Top, Middle: Visual results of applying models trained on Tai-Chi-HD (top) and VoxCeleb (middle) to videos from YouTube.
Bottom: Visual results of the model trained on a video with multiple characters.

Table 3. Ablation study for different loss on Tai-Chi-HD.

Measures w/o w/o w/o w/o w/o Full
Lvgg Lbg Lrots Ltran Lcon

Landmark 386.1 350.6 335.8 334.5 366.6 326.8
IoU 0.784 0.828 0.856 0.861 0.861 0.872

SCOPS, where the main objects are clearly separated from
the background. In the meanwhile, our results are aligned
with image silhouette more tightly than Motion Co-part.

We further compare our method with PSD, NEM, R-NEM
and Flow Capsule on the accuracy of co-part segmentation
using the IoU metric on Exercise dataset. We train our
model with K = 15 segments in this comparison. As
reported in Table 2, our model achieves a consistently better
performance than the baselines.

4.4. Generalization

Our model can be trained with both single-video settings
(hand, quadruped, and robot arm) and multiple-video set-
tings (Tai-Chi-HD, VoxCeleb, and Exercise datasets), where
in the latter case, each pair of images are extracted from
the same random video during training. Models trained
with multiple videos can be generalized to images of the
same category but with difference appearance. For example,
without further training, the models trained on Tai-Chi-HD
and VoxCeleb datasets can be applied directly to videos
downloaded from YouTube, as shown in the top two rows
in Figure 7.

Moreover, it is rather straightforward to extend our method
to support multiple subjects. The bottom row of Figure 7
demonstrates an example of such ability, where a model is
trained on a video with two persons, and K = 17 is used to
accommodate additional potential part segments.

4.5. Ablation Study

We perform ablation studies to validate the contribution
of each loss employed in our training. The comparison is
conducted between the full training objective proposed in

w/o ℒ𝑏𝑔

Full

w/o ℒ𝑐𝑜𝑛

Figure 8. Visual comparison of segmentation results by using full
loss, disable Lcon and Lbg individually. Without Lbg , background
information distributed into many channels; while without Lbg ,
the foreground segmentation have severe noisy.

Sec.3.2 and its variants, each with one of the losses (Lvgg,
Lbg, Lrots, Ltran, Lcon) disabled. We use Tai-Chi-HD dataset
in these experiments, and the results are reported in terms of
foreground IoU and landmark regression accuracy. Note that
in the ablation study with Lvgg, we only remove the VGG
features from Lrec and keep the rest terms of Equation (5)
unchanged. The results summarized in Table 3 reveal that
all the losses are beneficial towards effective learning.

Lvgg is the most significant one among them, which influ-
ences both foreground extraction and part segmentation.
Unlike the methods that generate images using field-based
global warping operation (Siarohin et al., 2019; Sabour et al.,
2020), our model cannot utilize the pixels of the input im-
age directly to generate the target image, where the VGG
features significantly facilitate the training and help achieve
a good performance.

Lbg is another critical term of our objective design, which
enforces all the background information to be embedded
in the background channel, thus consequently ensuring the
segmentation tightly aligned with the foreground silhouette.
As shown in Figure 8, the segmentation trained without this
loss can be noisy with background pixels mislabeled as a
part of object segments.
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Motion
Co-part

Fullw/o
ℒtrf

Figure 9. Visual comparison for the interpretability of intermediate
affine transformations, which are generated using our method with
full loss, disable Ltrf and method in Motion Co-part respectively.

Similar to the results reported in (Hung et al., 2019), we find
Lcon guarantees the semantic correctness of the segmented
parts through penalizing vague and scattered partition in
each channel. This conforms to our ablation study that Lcon
has obvious effect on Landmark regression accuracy. More
visual comparison result can be found in Figure 8.

As illustrated in Figure 9,Lrots andLtran play a critical role in
bringing the estimated part transformation with explainable
meaning. The part transformations learned without these
losses only loosely correlate to the global pose of the parts,
while the transformations estimated using our model align
with the motion of the object parts. We find these loss terms
very effective when the transformation of each part can be
clearly defined, such as in the case of human limbs in the
Tai-Chi-HD dataset. Nonetheless, these loss terms take only
marginal effect on faces in the VoxCeleb dataset, though we
kept this term as a part of a uniform training process.

5. Discussion
In this paper, we have proposed an unsupervised Co-part
segmentation approach, which leverages shape correlation
information between different frames in the video to achieve
semantic part segmentation. We have designed a novel net-
work structure which achieves self-supervision through a
dual procedure of part-assembly to form a closed loop with
part-segmentation. Additionally, we have developed sev-
eral new loss functions that ensure consistent, compact and
meaningful part segmentation and the intermediate transfor-
mations with clear explainable physical meaning. We have
demonstrated the advantages of our method through a host
of studies.

We empirically choose weights in our training to balance
the magnitude of each loss term in a preliminary training,

Figure 10. Failure case. Due to the lack of temporal information,
our method can fail in inferring occluded parts and may incorrectly
label the limbs when a person turn around.

except for the image reconstruction loss, which is an or-
der of magnitude larger than the other regularization terms
due to its critical role in the training. The performance of
our model is not sensitive to the specific choice of these
loss weights, and similar video categories can share the loss
weights. In order to make a fair comparison, we deliberately
use different K in some of the experiments to ensure con-
sistency with the baseline methods, but the performance of
the method is not sensitive to the specific value of a large
enough K. For example, we can achieve correct segmenta-
tion using an empirical value of K = 15 in all the test cases
discussed in the paper.

Several lines are open for future research. First, As showed
in Figure 10, due to the lack of temporal information, our
method can fail in inferring occluded parts and may incor-
rectly label the limbs when a person turns around. It would
be a valuable extension of the current framework to train
with image sequences or videos to address such inconsis-
tency issues using the time coherence information embedded
in the video. Second, although our method allows moderate
background motions as exhibited in Tai-Chi-HD and Vox-
Celeb datasets during training, dramatic background change
can interfere the training stage and degrade the performance.
Extending our method to support training on videos with
dramatic background change is a viable future work. An-
other interesting direction would be additionally identifying
joint positions, which would significantly support a more
diverse range of applications. Lastly, extending the study
of co-part segmentation to 3D makes another meaningful
future work.
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