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Figure 1: Open-loop controls reconstructed for a Martial Arts routine: Southern Fist (top); and a Stylized Dance (bottom).

Abstract

We address several limitations of the sampling-based motion control method of Liu et at. [LYvdP∗10]. The key
insight is to learn from the past control reconstruction trials through sample distribution adaptation. Coupled
with a sliding window scheme for better performance and an averaging method for noise reduction, the improved
algorithm can efficiently construct open-loop controls for long and challenging reference motions in good quality.
Our ideas are intuitive and the implementations are simple. We compare the improved algorithm with the original
algorithm both qualitatively and quantitatively, and demonstrate the effectiveness of the improved algorithm with
a variety of motions ranging from stylized walking and dancing to gymnastic and Martial Arts routines.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

The sampling-based motion control method from Liu et
al. [LYvdP∗10] offers a general framework for construct-
ing open-loop controls from example motions. It is fast,
robust, and general enough to handle many types of mo-
tions including locomotion and contact-rich floor interac-
tions. Since its introduction four years ago, the method has
also been successfully applied to parkour-style highly dy-
namic motions [LYvdPG12] and skeleton-driven soft body
characters [LYWG13].

Despite its successful applications, the original sampling-
based control method has several limitations. First, the con-
trol reconstruction process treats each trial independently.
If failure occurs, the reconstruction restarts without learn-
ing anything from the past experiences. Thus when work-
ing with challenging motions where the success rate of sam-
pling is low, the method becomes inefficient and requires
an excessive amount of reconstruction passes. Second, the
original algorithm works on the motion as a whole and al-
ways restarts from the very beginning when failure occurs.
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Therefore for long motions or motions that contain criti-
cal instants, the method rarely succeeds or takes too long
to complete. For example, motions with long-flight phases
such as gymnastic movements need to be controlled more
precisely before the take-off, as very limited control can be
done during flight to correct errors. Lastly, sampling-based
methods are inherently noisy and thus the resulted motions
may look jerky. Such artifacts are not so noticeable for floor
interactions but can become disturbing for balancing and lo-
comotion tasks. For instance, the head and body of the vir-
tual character may shake unrealistically during standing or
while walking.

In this paper, we address the above limitations of the orig-
inal algorithm based on a key insight that the later control
reconstruction passes should learn from previous successes
and failures in order to draw samples in smarter ways. The
problems of the original algorithm mainly come from its
naive trial-and-error approach to draw samples until a so-
lution is stepped upon by chance. We realize such learning
through a modified CMA (Covariance Matrix Adaptation)
method as will be described in Section 4. We further in-
tegrate a sliding window mechanism into the learning pro-
cess to improve the reconstruction efficiency and robustness
for long motions and motions with critical instants. We also
propose two averaging methods to reduce the noise in re-
constructed controls, as will be described in Section 5. Both
methods are effective in terms of noise reduction, but the
simple averaging method needs multiple control trajectories
and may become inefficient for challenging motions. In con-
trast, the elite averaging method averages elite samples dur-
ing reconstruction and thus requires much less number of
trials and time to achieve comparable results.

We compare our algorithm with the original algorithm
both quantitatively and visually in Section 6 and in the ac-
companying video. Lastly, we conclude the paper with dis-
cussion on algorithmic limitations and potential areas for fu-
ture research in Section 7.

2. Related Work

Physics-based motion control has been a topic of exten-
sive research in recent years, ranging from basic bal-
ancing [MZS09], locomotion [YLvdP07, MLPP09, LKL10,
MdLH10,CBvdP10,KH10], rolling [HYL12,BMYZ13], bi-
cycle stunts [TGLT14], to skilled gymnastic and parkour
movements [HWBO95, LYvdPG12, ABdLH13]. However,
control construction for highly dynamic stunts and long per-
formance routines remains an open problem. Such motions
usually consist of a series of balancing postures, contact-
rich moments, highly dynamic segments, and critical in-
stants that are easy to fail. The pioneer work of Hodgins et
al. [HWBO95] manually designs controls for athletic ma-
neuvers, which requires human insight and parameter tun-
ing. Ha et al. [HL15] integrate human coaching and numer-
ical optimization to achieve more efficient control design.

Feedback policies can greatly enhance control robustness,
but so far have mainly been demonstrated for locomotion
only [YLvdP07, CBvdP10, LKL10]. Most recently, hand-
designed control structures and optimized feedback controls
have also been demonstrated for rotational movements such
as flips [ABFHdL14]. Generally speaking, designing con-
trols with human guidance requires deep understanding of
the motion of interest, which is hard to generalize and often
suffers from the lack of styles and details.

Trajectory optimization with respect to spacetime con-
straints has been investigated in both Computer Animation
and Robotics [WK88,SHP04,CH07,WP09,MTP12]. Motion
examples are demonstrated to be effective in reducing the
dimensionality of the optimization and providing good ini-
tial solutions [SHP04, SKL07]. Contact-sensitive behaviors
can be discovered through additional contact-related vari-
ables [MTP12] or simple goals specified for short spacetime
windows [ABdLH13]. When analytical gradients are hard to
obtain for the optimization, stochastically estimated gradi-
ents can help [KCT∗11]. Our method can generate physi-
cally valid trajectories just as trajectory optimization meth-
ods. The major difference is that we “track” the time-varying
control target in the full-body control space through a sam-
pling mechanism. While most trajectory optimization meth-
ods directly search for the solution in the trajectory space.
Usually such discretization results in search space of higher
dimensions and non-differentiable optimization vulnerable
to local minima. As a result, no previous trajectory optimiza-
tion method can produce controls for challenging motions
demonstrated in this work at comparable quality.

The sampling-based motion control method of Liu et
al. [LYvdP∗10] offers a general framework that in theory
can work on any type of motions. However, due to the pre-
viously mentioned weaknesses of the original algorithm, the
success rate of the algorithm is rather low for long and chal-
lenging motions, such as a Martial Arts performance or a
gymnastic routine. We improve the original algorithm us-
ing the technique of distribution adaptation, which is a suc-
cessful idea applicable to many sampling-based methods,
such as Sequential Monte-Carlo [CF00] and Covariance Ma-
trix Adaptation (CMA) [Han06]. Recently CMA has been
adopted in a number of animation works in optimizing con-
trol strategies [WFH09, WP09, ABdLH13]. Our work uti-
lizes the (µW ,λ)-CMA-ES method [Han06] in a different
way from previous works that optimize the whole control
trajectories all at once. We will detail our distribution adap-
tation method with respect to the conventional way of apply-
ing CMA in Section 4.

The idea of learning from past trials has being used
in Robotics. For example, the particle filtering tech-
nique [DJ11] adapts the distribution of particles according
to their rewards. More relevant to our idea is the episodic
reinforcement learning method using reward-weighted re-
gressions [HPS09, PK09, KCC10]. Such method iteratively
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Figure 2: Schematic illustration of the original sampling-
based control reconstruction method. The samples at each
iteration form a tree.

improves the control policy based on past episodes. How-
ever, none of these works demonstrate learning in high-
dimensional control spaces as ours. Thus adapting such
method to highly agile human motions other than basic
walking and running remains an open problem.

3. Original Algorithm Review

The original sampling-based control reconstruction method
[LYvdP∗10] starts with a kinematic reference motion m̃mm,
which is a series of poses in time {p̃ppt}. We wish to use m̃mm
to drive a virtual character with PD-servos to perform tasks
dynamically. However, due to data noise, model discrepan-
cies between the motion capture subject and the virtual char-
acter, and the various simplifications and inaccuracies of PD
controls and the simulator, directly tracking m̃mm will often fail.
For example, the virtual character falls down while walking,
or fails to roll over in a rolling task. Thus the algorithm sam-
ples necessary corrections ∆pppt at regular instants so that the
compensated target trajectory m̂mm = {p̃ppt +∆pppt} not only be-
comes physically feasible when tracked with PD-servos, but
also produces a simulated motion mmm that is visually similar
to the input reference m̃mm.

We refer to a single run of the control reconstruction
method as a trial or a pass. Each trial is further segmented on
the timeline into multiple iterations. For iteration k at sim-
ulation time k∆t, we draw Ns samples {∆ppp j

k} from a pre-
defined sampling window. Here ∆t is the control construc-
tion time step and j is the sample index. Then we advance
the simulation from (k− 1)∆t to the current instant, start-
ing from one of the elite states of the last iteration at time
(k− 1)∆t. The ns offset targets p̃ppk +∆ppp j

k that result in the
best end state are then saved as elite samples of the cur-
rent iteration. All the elite samples iteratively constitute a
K-level tree as shown in Figure 2, where Ns = 4,ns = 2, and
K = 4. Each node in the tree records the sample ∆ppp j

k and
the end state. Finally we assemble m̂mm by tracing backward
in time from the elite samples at the end of the motion and
selecting the path with the lowest cost. To further facilitate
the reconstruction, p̃ppk can be replaced with a better guess
estimated from an inverse dynamics process as suggested
in [LYWG13].

The quality of samples are evaluated by a cost function

Figure 3: An illustration of our sample distribution adap-
tation method. T1: the first control reconstruction trial fails
at iteration I2, so only the distribution for I1 is updated. T2
and T3: after a few trials, more distributions get updated and
longer control trajectories can be constructed. Ti: the distri-
butions of I1 and I2 have converged, the reconstruction win-
dow is slid to start from I3.

that sums up a collection of error terms:

E =
1
c ∑wiEi (1)

where Ei’s can be tailored to control the full-body poses or
end-effectors, and c is a normalization factor. We refer the
readers to the original paper [LYvdP∗10] for more details.

This algorithm works well for a large variety of motions.
However, it has several drawbacks and weaknesses:

• The algorithm always adheres to a simple trial-and-error
approach and samples from the start to the end. Thus for
long motions or motions containing critical instants such
as airborne motions, it either requires an excessive num-
ber of reconstruction trials or simply fails.

• The algorithm does not learn from past successes or fail-
ures. For each iteration, the samples are always drawn
from a zero-centered uniform distribution. In cases where
the reference motion needs large compensation, the algo-
rithm has to employ large sampling windows which es-
sentially dilutes the effective sampling density and lowers
the success rate of reconstruction.

• In addition to the desirable compensation effect, the sam-
ples also introduce undesirable noise which leads to ex-
cessive vibration and jerkiness in the simulated motion.
This problem is particularly visible in low-dynamic mo-
tions such as balancing and walking.

4. Sample Distribution Adaptation

To equip the original algorithm with a learning ability, we
employ the idea of distribution adaptation. The key is to ac-
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knowledge that even failed reconstruction passes may still
contain good samples in the early iterations. We can thus
learn from these elite samples to reshape the default uni-
form distributions from which we draw samples for the next
reconstruction trial. Inspired by the successful CMA algo-
rithm, we can move the centers of the distribution as well as
update the shape of the distribution to favor samples that are
closer to the true solution space.

More specifically, we adapt the sample distributions for
earlier successful iterations Ik before we start the next trial
Ti, as illustrated in Figure 3. The first trial T1 draws samples
from the default normal distributions π

k
1 =N (000,Σk

1), where
k is the iteration index and Σ

k
1 is initialized with the default

sampling window size. When T1 fails at iteration I2, we up-
date the sample distribution for I1 using the elite samples
and denote the new distribution as π

1
2 = N (µµµ1

2,Σ
1
2). Then

we start another reconstruction pass T2 for which we draw
samples from the updated distribution π

1
2 for I1. This pro-

cess continues and the algorithm utilizes elite samples of
past trials to gradually direct future sample drawings closer
and closer to the true solution. This is in contrast to the orig-
inal algorithm which does not learn from past computations
and always draws samples randomly and blindly.

We use the (µW ,λ)-CMA-ES method [Han06] to update
sample distributions for each iteration. Our algorithm thus
only has one new parameter compared to the original algo-
rithm: the step size parameter for the CMA algorithm, and
we initialize it to 0.1 for all the examples shown. The nor-
mal distributions are updated according to the quality of elite
samples, that is, better elite samples are weighted more dur-
ing the update. The sample quality is measured by: a) the
height of the sample’s offspring subtree; and b) the accumu-
lative cost of the best path from the sample to the leaves.

Note that although our distribution adaptation method is
inspired by the CMA algorithm, it is different from other
applications of CMA in the control optimization litera-
ture [ABdLH13]. The previous work samples from the full
control space, which usually results in high computational
cost, even for sparsely placed control points on the time line.
Our problem will become intractable if we were to sample
and optimize controls for all the iterations all together. We
thus modify the CMA scheme to update distributions for
each iteration independently. Such scheme also facilitates
easier integration with the original iterative control recon-
struction algorithm.

4.1. Sliding Window

The distribution adaptation method described above further
enables two improvements to achieve more effective con-
trol reconstruction, especially for long motion clips. First,
we can choose to run up to a fixed number of iterations in
each trial, rather than wait until the trial fails, so that the sam-
ple distributions can be updated in a timely fashion. Second,

Algorithm 1 Sample Distribution Adaptation
input: reference motion m̃mm = {p̃ppk};

default sampling window
output: target trajectory m̂mm = {p̃ppkkk +∆pppk}

1: initialize {πk
1}

2: i = 1 . trial index

3: kstart = 1 . start iteration of the sliding window

4: repeat
5: kstop = kstart+(size of sliding window)
6: for k from kstart to kstop do . control reconstruction

7: draw Ns samples {∆ppp j
k} ∼ πk

i

8: simulate and select ns samples {∆ppp j
k}

9: if reconstruction fails then
10: set kstop = k and break
11: end if
12: end for
13: for k from kstart to kstop−1 do . distribution adaptation

14: πk
i+1 = update πk

i with {∆ppp j
k}

15: end for
16: while iteration kstart is good enough do . window sliding

17: kstart = kstart +1
18: end while
19: i = i+1
20: until m̃mm is completely reconstructed

the distributions for the earlier iterations will likely converge
after multiple updates, thus we can skip these iterations in
future trials to focus sampling only for the later iterations.
These two variations combined suggest a sliding window
mechanism for control reconstruction.

More specifically, we use fifty iterations (five seconds) as
the size of the sliding window in all our experiments. We
slide an iteration outside of the window if: (a) the distribu-
tion of the iteration has been updated for at least five times
and at most twenty times; and (b) the distribution has stabi-
lized, i.e. the cost of the iteration has not decreased for the
last five trials; or (c) the best sample drawn from the distribu-
tion is good enough according to the cost function. Note that
long motions usually consist of both high dynamic segments
and static balancing periods, thus we need to normalize the
cost function according to the kinetic energy of the window
to more accurately estimate convergence.

Algorithm 1 shows the pseudocode of our improved con-
trol reconstruction algorithm. Generally speaking, recon-
structing controls for a challenging motion with the original
algorithm may fail even using big sampling windows, large
number of samples, and multiple passes of reconstruction.
Yet the improved algorithm can learn from previous trials to
advance to success window by window. For motions that can
be reconstructed successfully by both algorithms, the recon-
structed controls from our method are superior in quality.
This is because the improved method is able to gradually
move and reshape the sample distributions so that smaller
sampling windows can be used to reduce sampling noise.
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Figure 4: Noise reduction using simple averaging for styl-
ized walking. The CoM movement is much smoother in the
simulation under controls reconstructed from the average of
one hundred control trajectories than in the individual sim-
ulations (two of which shown as dotted curves).

5. Noise Reduction

Sampling-based methods are inherently noisy. Post-
smoothing of the control trajectory m̂mm, however, does not
work as it results in physically invalid controls. We thus fol-
low the law of large numbers, which suggests simple av-
eraging as an effective way for noise reduction. The origi-
nal sampling-based algorithm can actually utilize averaging
straightforwardly as follows. We simply run the reconstruc-
tion multiple times until N control trajectories m̂mmi, i = 1 . . .N
are generated. We denote their corresponding simulated tra-
jectories as mmmi. Then we average these trajectories as:

¯̂mmm =
1
N

N

∑
i=1

m̂mmi (2)

m̄mm =
1
N

N

∑
i=1

mmmi (3)

Note that these trajectories are a collection of poses in time,
so the averaging operation is applied to all the frames at the
same instant of time on the trajectories. Since time scal-
ing may occur during control reconstruction as described
in [LYvdPG12], the trajectories need to be first resampled
to the same length in time before they can be averaged.

We then rerun the sampling algorithm using ¯̂mmm as the ini-
tial solution and m̄mm as the reference. This final reconstruction
pass only needs to use very small sampling windows, and
thus a much smoother control trajectory can be obtained.
Note again that ¯̂mmm itself is not a control solution, just like
any kinematically smoothed version of m̂mm, because they vi-
olate the equations of motion constraint. However, ¯̂mmm is ob-
tained from averaging physically plausible controls and is
thus closer to the solution than kinematically smoothed con-
trols.

Figure 4 shows the effect of noise reduction using the sim-
ple averaging strategy on a stylized walking motion. The
curves represent the vertical movement of CoM (Center of
Mass). The simulation under controls reconstructed from the
averaged control ¯̂mmm (shown as blue solid curve) is much
smoother than the individual simulations (shown as dotted
curves), and thus indicates a stabler walk.

5.1. Elite Samples Averaging

The averaging method described above is simple, effective,
and can be directly applied to the original algorithm. How-
ever, it requires multiple passes to obtain at least N success-
ful control trajectories m̂mmi for the averaging operation. If the
success rate of control reconstruction is low, for example for
challenging motions that motivated our distribution adapta-
tion algorithm described in the last section, the computation
can become prohibitive. We can, however, start to reduce
noise by using the elite samples as soon as we have obtained
the first control trajectory m̂mm1.

More specifically, for each sampling iteration of m̂mm1, i.e.,
each level of the sampling tree as shown in Figure 2, we
select and average the elite samples according to their good-
ness. We compute a weighted average of all the elite samples
∆ppp j

k at iteration k as follows:

∆pppk =
∑h j∆ppp j

k
∑h j

(4)

where h j is the sample’s subtree height and has to be larger
than four for a sample to be considered elite. It measures
the quality of samples by their descendants, and is therefore
better than the near-sighted sample cost function. We then
use the averaged samples as an improved initial guess for
another control reconstruction pass.

We also shrink the sampling windows gradually and re-
place the reference motion with the simulated motion peri-
odically. This is because the average of elite samples is a bet-
ter initial guess for control reconstruction, and the simulated
motion is a dynamically-filtered version of the reference mo-
tion. This is similar to applying Equations 2 and 3 in the sim-
ple averaging scheme. For all our experiments, we shrink the
sampling window by 30% after each successful trial. The al-
gorithm is not sensitive to this parameter to be successful,
and will just take longer if a smaller shrinking factor is used.
We replace the reference motion with the simulated motion
of the last successful reconstruction whenever we encounter
a failure in the reconstruction process. The above described
scheme learns from past successful trials as fast as possi-
ble rather than wait for multiple successful reconstructions.
Therefore, the sampling noise can be reduced much faster as
compared to the simple averaging scheme.
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Figure 5: Simulations of a gymnastic flip (top), a stylized walk (middle), and a twist flip (bottom).

6. Results

Performance We have tested the improved sampling-based
motion control algorithm using a variety of motions, includ-
ing low-dynamic motions, high-dynamic motions, airborne
motions, and long performance routines. Table 1 shows its
performance measured on a small 80-core cluster. We ini-
tialize the sampling window ω0 to 0.1, which is then grad-
ually adapted after each trial. To quantitatively measure the
noise level, we define NSR (Noise-to-Signal Ratio) for the
simulated motion as

NSR =
σ

2(mmm− m̃mm)

σ2(m̃mm)
×100 (5)

where mmm is the simulation trajectory, and m̃mm is the reference
motion. We compute the motion variance σ using joint ro-
tations. This NSR reflects the fact that visually perceivable
noise level correlates with the energy of motions. That is,
highly dynamic motions can in a way conceal noise to a cer-
tain degree.

We also encourage the readers to evaluate the motion
quality through the accompanying video demos. Here in the
paper Figure 5 shows the animation strips of a gymnastic flip
on the top, a stylized walk in the middle, and a twist flip at
the bottom. Figure 1 shows a Chinese Martial Arts routine
called Southern Fist on the top, and a stylized dance at the
bottom. Our method can also physically retarget motions to
different characters with ease, thanks to its robustness. Fig-
ure 6 shows the stylized walk retargeted to a character with
its leg ratio significantly modified, and a monster character
quite different from humans.

Comparison of Reconstruction Table 2 shows a com-

motion
duration

# trials
time

NSR
(s) (min)

Stylized Walk 24.0 45 36.2 2.94
Long Fist 7.6 26 9.1 5.23

Backward Flip 3.0 16 3.2 18.9
Southern Fist 54.0 188 180 6.02

Gymnastic Flip 2.2 27 8.1 22.5
Twist Flip 3.5 8 2.3 27.0

Dribble 22.0 150 93.3 6.77
Dance 64.0 223 198 4.06

Table 1: Performance of the distribution adaptation algo-
rithm. Timing is measured on an 80-core cluster. The # trials
column shows the total number of control reconstruction tri-
als. NSR represents the noise-to-signal ratio of the simulated
motion.

parison of the sample distribution adaptation algorithm with
the original algorithm. Where possible, we assign parame-
ters with same values as in Liu et al. [LYvdP∗10] for ease
of comparison, such as for the sampling windows and the
PD-servo gains. As many of our tested motions were not ex-
amined by the original algorithm, at times we do need to
augment the original cost function in Equation 1 with new
terms for better control reconstruction. More specifically, for
all the flipping motions, we augment the cost function with
error terms to control the overall body orientation and end-
effector positions. Also for all motions with long durations
of quiescent standing, we modify the balance term in the
original cost function to track the center of the support poly-
gon in order to improve the stability of static balancing.

Table 2 shows that the original method usually cannot re-
construct controls successfully when small sampling win-
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motion method Ns ω0 # trials
time

NSR
(min)

Long
Fist

original
20000 0.5 1 9.3 11.3
2000 0.5 6 4.0 12.8
2000 0.1 failure

ours
2000 0.5 9 5.4 12.7
2000 0.1 26 9.1 5.23

Gym
Flip

original
20000 0.5
2000 0.5 failure
2000 0.1

ours
2000 0.5 12 3.5 36.3
2000 0.1 27 8.1 22.5

Table 2: Comparison of our distribution adaptation algo-
rithm with the original algorithm. Our improved algorithm
may take more trials due to the sliding windows, but the
total time used is on par with the original algorithm when
both worked. Note that tuning parameters of the original al-
gorithm cannot address all failures or improve the motion
quality to a satisfactory level.

motion method time (min) NSR0 NSR

Stylized Walk
simple 118

12.8
2.75

elite 17.6 2.68

Long Fist
simple 53.9

7.21
5.02

elite 5.9 5.78
Backward Flip elite 2.1 27.8 15.2
Southern Fist elite 34.4 6.02 4.30

Dance elite 36.4 4.06 3.70

Table 3: Noise reduction using the simple and elite aver-
aging schemes. NSR0 and NSR measure the noise-to-signal
ratio of a simulated motion before and after noise reduction
respectively. Note that for the latter three motions we did
not experiment with simple averaging because the computa-
tional cost is prohibitive.

dows were used. Enlarging the sampling windows ω0 and
increasing the number of samples Ns can help in some cases,
but not for all motions such as the gymnastic flip. The mo-
tion quality is also low as suggested by the high NSR val-
ues. In contrast, our improved method can generate high-
quality controls and motions using the same set of param-
eters (ω0 = 0.1,Ns = 2000) for all motions. Our algorithm
may take more trials due to the sliding windows, but the to-
tal time used is on par with the original algorithm when both
worked.

Comparison of Noise Reduction Table 3 shows the ef-
fectiveness of the simple and elite averaging methods for
noise reduction. For simple averaging, we use twenty suc-
cessful reconstructed control trajectories. For elite averag-
ing, we run a variable amount of trials until we have achieved
satisfactory noise reduction. The table indicates that elite av-
eraging usually takes much less total time to achieve compa-
rable results as simple averaging. In addition, for challenging
motions such as Backward Flip, Southern Fist, and Dance,

Figure 7: Simple averaging for Stylized Walk using differ-
ent numbers of control trajectories. The green bars show the
noise-to-signal ratio of the final simulated motion, and the
blue stripes indicate the total reconstruction time.

we only applied elite averaging as simple averaging becomes
computationally too expensive.

Figure 7 shows the relationship of NSR with respect to
the number of successful control trajectories used in sim-
ple averaging. As we can see, although averaging more tra-
jectories can gradually improve the motion quality, there is
an upper bound beyond which no noticeable noise reduction
can be gained further more. The sweet spot is around twenty
trajectories where good noise reduction can be achieved in
affordable time. We also encourage the readers to watch the
accompanying video to visually judge the effect of noise re-
duction.

Summary The improved control reconstruction algo-
rithm using the sample distribution adaptation method cou-
pled with the sliding window scheme is more successful
for challenging motions, requires less parameter tuning, and
produces motions of better quality, compared with the orig-
inal algorithm. Its performance depends on the number of
samples Ns drawn for each iteration, the length of the mo-
tion, and the number of reconstruction passes needed. For
example, we can use (Ns = 2000) to successfully reconstruct
the 54-second Southern Fist motion with 188 trials in 3 hours
on the cluster. The simulated motions are generally good
enough visually, but may still contain visible noise for mo-
tions with long static balancing periods where the absolute
value of visually tolerable noise level is low. In such cases,
we can apply the elite averaging method to further reduce
the noise level in just a few additional control reconstruction
runs.

7. Discussion

In conclusion, we have successfully improved the sampling-
based motion control algorithm of Liu et al. [LYvdP∗10], in
terms of both robustness and motion quality. More specifi-
cally, we can now generate open-loop controls for motions
that are computationally intractable to handle with the orig-
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Figure 6: Stylized walk retargeted onto a character with modified leg ratio (top) and a monster character (bottom).

inal algorithm; and significantly reduce the noise of the re-
constructions. In addition, our ideas are intuitive and the im-
plementations are simple. The original algorithm can still
be used for control reconstruction for short and easy mo-
tion clips, afterwards simple averaging can be applied to re-
duce noise. However, for long and challenging motions, all
the components presented in this paper are needed. That is,
the distribution adaptation approach coupled with the sliding
window scheme for control reconstruction, and elite averag-
ing for noise reduction. Control reconstruction employing
only the distribution adaptation procedure without sliding
windows can easily get stuck in local minima; and using slid-
ing windows alone without adapting the sample distributions
is more or less still a trial-and-error approach similar to the
original algorithm, and thus suffers from the same problems
of low success rate and large noise for challenging motions.

Since it is intractable to sample densely in the high di-
mensional control space, random noise and reconstruction
failures are inevitable in sampling-based control methods.
Our strategy is to approach the solution space as close as
possible, so that both the success rate and the reconstruc-
tion quality can be improved with a good initial guess and
small sampling windows. Our key insight is to utilize past
computations to direct future sampling. Specifically, the dis-
tribution adaptation method progressively improves the so-
lution estimation by updating the sample distributions based
on past successes and failures; and the noise reduction meth-
ods directly improve the solution from past successes. These
strategies are shown to be effective for a variety of motions
investigated in this paper.

The distribution adaptation method can be tweaked to re-
shape the sample distributions more aggressively to further
reduce noise, at the cost of more computations. This may
result in over-fitting at times, which will then cause the re-
construction being trapped in local minima. Thus we use a
relatively low limit for the maximal number of trials that can
be performed for the sliding windows, and apply an optional
elite averaging postprocessing pass to achieve better qual-
ity if needed. In a way, the elite averaging method can be
viewed as a manually guided process of adapting the sample

distributions. The averaging-based methods, however, are
just linear operations in highly nonlinear control spaces and
thus cannot completely remove all noise, especially when
the controls were constructed with large sampling windows.
In such cases, the distribution adaptation method is neces-
sary to guide the initial solution to the true solution space in
order for the control reconstruction and averaging methods
to be more effective.

Our tested motions were either downloaded from pub-
lic motion capture databases or captured by our own mo-
tion capture system. Thus the motion capture subjects were
all different and we simply replayed them on our human
model as the reference. Therefore our example motions con-
tain model mismatching errors in addition to the usual mo-
tion capture noise. Our reconstruction algorithm is robust
enough to automatically perform the necessary “physics-
based retargeting”. Our additional retargeting experiments
also show that the algorithm is robust to more aggressive
retargeting tasks. The tracking nature of the reconstruction
algorithm, however, implies that the algorithm can fail when
the physical accuracy of the example motion becomes too
poor, especially during long airborne phases of the motion.
One possible solution is to preprocess the reference motion
to first enhance its physical realism, e.g., dynamics filtering
[YN03,TK05] or physics-based retiming [MPS06]. Some of
the algorithm parameters can also be computed using more
principled methods, such as using [NF02,LHP05] for setting
the joint PD-servo parameters.

For future work, we would like to experiment with build-
ing closed-loop controls on top of the output of the improved
algorithm, similar to Ding et al. [DLvdPY12] that builds
feedback policies for the original algorithm. We are inter-
ested in better measures of noise-to-signal ratio for human
motions, as our NSR does not always align with human vi-
sual perceptions. We also wish to investigate noise reduction
in the more general framework of stochastic optimization for
motor control.
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ery of complex behaviors through contact-invariant optimization.
ACM Trans. Graph. 31, 4 (July 2012), 43:1–43:8. 2

[MZS09] MACCHIETTO A., ZORDAN V., SHELTON C. R.: Mo-
mentum control for balance. ACM Trans. Graph. 28, 3 (2009).
2

[NF02] NEFF M., FIUME E.: Modeling tension and relaxation for
computer animation. In SCA (2002), ACM, pp. 81–88. 8

[PK09] PETERS J., KOBER J.: Using reward-weighted imitation
for robot reinforcement learning. In Adaptive Dynamic Program-
ming and Reinforcement Learning (March 2009), pp. 226–232. 2

[SHP04] SAFONOVA A., HODGINS J. K., POLLARD N. S.: Syn-
thesizing physically realistic human motion in low-dimensional,
behavior-specific spaces. ACM Trans. Graph. 23, 3 (2004), 514–
521. 2

[SKL07] SOK K. W., KIM M., LEE J.: Simulating biped behav-
iors from human motion data. ACM Trans. Graph. 26, 3 (2007),
Article 107. 2

[TGLT14] TAN J., GU Y., LIU C. K., TURK G.: Learning bicycle
stunts. ACM Trans. Graph. 33, 4 (July 2014), 50:1–50:12. 2

[TK05] TAK S., KO H.-S.: A physically-based motion retarget-
ing filter. ACM Trans. Graph. 24, 1 (Jan. 2005), 98–117. 8

[WFH09] WANG J. M., FLEET D. J., HERTZMANN A.: Opti-
mizing walking controllers. ACM Trans. Graph. 28, 5 (2009),
Article 168. 2

[WK88] WITKIN A., KASS M.: Spacetime constraints. In Pro-
ceedings of SIGGRAPH 1988 (1988), pp. 159–168. 2
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