
Unsupervised Co-part Segmentation through Assembly
(Supplementary Material)

Qingzhe Gao, Bin Wang, Libin Liu, Baoquan Chen

1. Outline
This document contains implementation details of our
method. The content is organized as follows.

• Section 2: Network structure.

• Section 3: Implementation details.

2. Network Structure
As stated in the main paper, our segmentation network con-
sists of two major modules: image encoder E and segment
decoder D. Their structures are shown in Figure 1. In this
document, we assume the shape of a tensor is in the format
of C ×H ×W , where C is the number of channels, H and
W are the height and the width of the tensor, respectively.

2.1. Image Encoder

The image encoder E includes three parts: feature extractor,
feature map estimator, and transformation estimator.

Feature Extractor. The feature extractor takes an image
I of size (3× 128× 128) as input and computes a feature
image f of size ((128×(K+1))×32×32), where (K+1)
corresponds toK foreground parts and one background part.

The network is constructed based on the standard U-Net ar-
chitecture (Ronneberger et al., 2015), where three cascaded
downsampling blocks and the corresponding upsampling
blocks are employed. The initial feature count is 512 and
the max feature count is set to 1024 in our implementation.
Before being input into the U-Net module, an input image
will first pass through three convolutional layers, each fol-
lowed by a ELU layer and an instance normalization layer,
and two max-pooling layers. The output of the U-Net will
pass through an additional convolutional layer to compute
the final feature image. The parameters of these layers can
be found in Table 1.

Feature Map Estimator. Based on the output feature im-
age f of the feature extractor, the feature map estimator
computes (K + 1) feature maps {Vk}, k ∈ {0, . . . ,K},
each of size 10 × 32 × 32. We employ two convolutional
layers in this module, where a leaky ReLU with 0.2 negative
slope is used as the activation function of the first convolu-

tional layer. The parameters of these layers are shown in
Table 2.

Transformation Estimator. Similar to the feature map es-
timator, the transformation estimator also takes the feature
image f as input and computes the transformations of every
part. The network first convert f into a one-dimensional
feature vector using three convolutional layers, then three
separate MLPs are employed to estimate the scaling (sx, sy),
rotation (sθ, cθ), and translation (tx, ty) of the transforma-
tion. Note that we only estimate transformations of the K
foreground parts. The transformations of the background
part is assumed to be identity. Table 3 reports the parameters
of these layers.

2.2. Segment Decoder

Segment Decoder. The segment decoder D takes a feature
map Vk (10× 32× 32) as input, feeds it through two con-
volutional layers, one residual block (He et al., 2016), and
two upsampling blocks (Johnson et al., 2016), then finally
outputs a tensor with size (4× 128× 128). The first three
channels of this tensor are considered as the part image Pk
(3 × 128 × 128), while the fourth channel is used as the
depth map Dk (1× 128× 128). The details are shown in
Table 4.

3. Implementation Details
Our system is implemented in the PyTorch framework. We
train our networks using Adam (Kingma & Ba, 2015), and
the learning rate is set to 0.00005. We use batch size 6 for
K = 10 and 4 for K = 15. The training is performed
on one Titan X GPU with 12GB memory. We terminate
the training when the learning progress stalls or exceeds
500, 000 iterations.

In experiment, we set K same to previous work to compare.
In practice, the K is not sensitive to the result when K
is big enough. The model can automatically select which
channels to segment and set redundant channels to be empty.
For hand, quadruped, and robot arm, we set the K is 16, it
works well.

We empirically choose weights to balance the magnitude
of each loss term in a preliminary training, except for the

1



conv
conv

𝑉!

conv
conv
conv

LL L

𝑠!, 𝑐! 𝑠", 𝑐# 𝑡", 𝑡#

conv

conv

max-Pool
conv

max-Pool

U-net
conv

Image

conv

upsample

residual
conv

upsample

conv

𝑉!

conv

𝑃% 𝐷%

ℰ 𝒟

Feature 
Extractor

Feature Map 
Estimator

Transformation Estimator

Figure 1. Two major modules of our network: image encoder E and segment decoder D. The image encoder E is composes of three parts:
feature extractor, feature map estimator and transformation estimator.

Table 1. Structure of Feature Extractor. Specifically, conv, inst, elu represent the convolution layer, instance normalization layer,and ELU
activation respectively.

Parameter Kernel Stride Channel in Channel out InpRes OutRes

conv1+elu+inst 3× 3 1 3 64 128× 128 128× 128
maxpool 2× 2 1 64 64 128× 128 64× 64

conv2+elu+inst 3× 3 1 64 256 64× 64 64× 64
maxpool 2× 2 1 256 256 64× 64 32× 32

conv3+elu+inst 3× 3 1 256 512 32× 32 32× 32
U-Net 3× 3 1 512 1024 32× 32 32× 32
conv4 3× 3 1 1024 128× (K + 1) 32× 32 32× 32

image reconstruction loss, which is an order of magnitude
larger than the other regularization terms due to its critical
role in the training.The performance of our model is not
sensitive to the specific choice of these loss weights, and
similar video categories can share the loss weights.

Table 5 reports the weights of the training losses as described
in Section 3.2 of the main paper. Specifically, the vgg loss in
the image reconstruction loss is computed in five different
resolutions: 128 × 128, 64 × 64, 32 × 32, 16 × 16, and
8×8. The weights of the corresponding loss terms are set to
[1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0] as suggested in (Wang
et al., 2018). We use a smaller weight λcon/10 for the
concentration loss computed on canonical parts M∗

k . The
random transformations used to compute the equivariance
loss are generated uniformly in the scaling range [0.8, 1.05],
the rotation range [−180◦, 180◦], and the translation range
[−0.2, 0.2].

We train separate networks for each dataset used in this
work. The two images of an image pair are both randomly
selected from the same video clip. We augment the training
data using random rotations (in the range of [−15◦, 15◦])
and color jittering to increase the robustness of the network,
where the same augmentation is applied to both the images
of an image pair.

We have included some of our results and comparisons to the
state-of-the-art approaches in the main paper. For additional
results and comparison, please refer to Figure 2, Figure 3,
Figure 4, Figure 5, Figure 6, and Figure 7 in this document,
as well as the the supplementary video.



Table 2. Structure of Feature Map Estimator. lrelu represents leaky ReLU activation.
Name Kernel Stride Channel in Channel out InpRes OutRes

conv5+lrelu 7× 7 1 128× (K + 1) 32× (K + 1) 32× 32 32× 32
conv6 7× 7 1 32× (K + 1) 10× (K + 1) 32× 32 32× 32

Table 3. Structure of Transformation Estimator. linear represents linear layer.
Name Kernel Stride Channel in Channel out InpRes OutRes

conv7+lrelu 4× 4 2 128× (K + 1) 32× (K + 1) 32× 32 16× 16
conv8+lrelu 4× 4 2 32× (K + 1) 16× (K + 1) 16× 16 8× 8
conv9+lrelu 4× 4 2 16× (K + 1) 4× (K + 1) 8× 8 4× 4

resize - - 4× (K + 1) 64× (K + 1) 4× 4 1
linear1 - - 64× (K + 1) 2×K 1 1
linear2 - - 64× (K + 1) 2×K 1 1
linear3 - - 64× (K + 1) 2×K 1 1

Table 4. Structure of Decoder. residual and upsample represent residual block (He et al., 2016) and upsampling block (Johnson et al.,
2016).

Name Kernel Stride Channel in Channel out InpRes OutRes

conv10+lrelu 7× 7 1 10 64 32× 32 32× 32
residual 3× 3 1 64 64 32× 32 32× 32

conv11+lrelu 3× 3 1 64 128 32× 32 32× 32
upsample1 3× 3 1 128 64 32× 32 64× 64
upsample2 3× 3 1 64 32 64× 64 128× 128

conv12+lrelu 3× 3 1 32 16 128× 128 128× 128
conv13 3× 3 1 16 4 128× 128 128× 128

Table 5. Parameters setting.
Parameter λ1 λ2 λ3 λs λt λbg λtran λrots λeq λcon

Tai-Chi-HD 10 5 1 0.1 1 0.5 1 0.1 0.02 0.35
VoxCeleb 10 5 1 0.1 1 0.05 1 0.05 0.02 0.35
Exercise 10 5 1 0.1 1 0.5 1 0.1 0.02 0.35



Input SCOPS Motion Co-part Ours

Figure 2. Additional results and comparisons on Tai-Chi-HD



Input SCOPS Motion Co-part Ours

Figure 3. Additional results and comparisons on Tai-Chi-HD (cont.)



Input SCOPS Motion Co-part Ours

Figure 4. Additional results and comparisons on VoxCeleb



Input SCOPS Motion Co-part Ours

Figure 5. Additional results and comparisons on VoxCeleb (cont.)



Input Arm GT Leg(L) GT Leg(R) GT Full GT

Figure 6. Segmentation results on Exercise dataset. We show both our results and the ground-truth (GT) segmentation provided by the
dataset. The part masks are superimposed on the input images.



Input Arm GT Leg(L) GT Leg(R) GT Full GT

Figure 7. Segmentation results on Exercise dataset (cont.). We show both our results and the ground-truth (GT) segmentation provided by
the dataset. The part masks are superimposed on the input images.



References
He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Johnson, J., Alahi, A., and Fei-Fei, L. Perceptual losses for
real-time style transfer and super-resolution. In Proceed-
ings of the European Conference on Computer Vision, pp.
694–711, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In In-
ternational Conference on Medical image computing and
computer-assisted intervention, pp. 234–241. Springer,
2015.

Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J.,
and Catanzaro, B. High-resolution image synthesis and
semantic manipulation with conditional gans. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018.


