
Terrain Runner: Control, Parameterization, Composition,
and Planning for Highly Dynamic Motions

Libin Liu∗∗ KangKang Yin†† Michiel van de Panne‡‡ Baining Guo§§

∗Tsinghua University †National University of Singapore ‡University of British Columbia §Microsoft Research Asia

Figure 1: An animated character runs, vaults, jumps, and drop-rolls across a parkour terrain during a real-time physics-based simulation.
Given a single motion capture clip of each of these four skills as input, our method uses an offline process to develop robust control policies
for parameterized versions of these skills, as well as robust transition motions.

Abstract

In this paper we learn the skills required by real-time physics-based
avatars to perform parkour-style fast terrain crossing using a mix
of running, jumping, speed-vaulting, and drop-rolling. We begin
with a single motion capture example of each skill and then learn
reduced-order linear feedback control laws that provide robust ex-
ecution of the motions during forward dynamic simulation. We
then parameterize each skill with respect to the environment, such
as the height of obstacles, or with respect to the task parameters,
such as running speed and direction. We employ a continuation
process to achieve the required parameterization of the motions
and their affine feedback laws. The continuation method uses a
predictor-corrector method based on radial basis functions. Lastly,
we build control laws specific to the sequential composition of dif-
ferent skills, so that the simulated character can robustly transition
to obstacle clearing maneuvers from running whenever obstacles
are encountered. The learned transition skills work in tandem with
a simple online step-based planning algorithm, and together they
robustly guide the character to achieve a state that is well-suited for
the chosen obstacle-clearing motion.

Keywords: physics-based animation, motion control, parkour

Links: DL PDF

1 Introduction

The physics-based animation of human-like characters has seen
many significant advances, especially for locomotion tasks. How-

∗e-mail:llb05@mails.tsinghua.edu.cn
†e-mail:kkyin@comp.nus.edu.sg
‡e-mail:van@cs.ubc.ca
§e-mail:bainguo@microsoft.com

ever, the abilities and overall agility of the proposed control meth-
ods still fall far short of many human motions, such as that exhibited
by a freerunner performing parkour skills [Edwardes 2009]. Park-
our is a physical discipline which focuses on efficient movement
around obstacles, and is considered as a sport, an art, or sometimes
even a philosophy. The control, agility, expressivity, and versatility
that human athletes demonstrate in highly dynamic motions such as
parkour makes them mesmerizing to watch.

Reproducing the abilities of a high-level parkour athlete can be con-
sidered a “grand challenge” problem for character animation for
several reasons. First, reference motions are difficult to capture.
Capturing highly dynamic motions such as those used in parkour re-
quires large space, special equipment, and trained athletes, in con-
trast to easy-to-capture motions such as walking. We thus desire
a method that requires only a sparse set of motion capture exam-
ples. Second, designing robust motion controllers usually requires
domain knowledge and human insight. However, the required in-
sights are hard to obtain for unfamiliar and highly dynamic mo-
tions. A largely-automated method that is broadly applicable to a
variety of motions is thus desirable. Third, the sequential compo-
sition of highly dynamic skills is difficult to develop using existing
approaches for physics-based control. The end state resulting from
one controller can easily fall outside the basin of attraction of the
next controller, and the physical barriers in terrain-crossing tasks
can appear at any distance with arbitrary height.

We present the first attempt at achieving the real-time physics-based
simulation of an integrated subset of parkour skills, including run-
ning, jumping, speed vaulting, and drop-rolling. While this set
of skills falls far short of a complete repertoire of parkour skills,
we believe that it provides an important proof-of-concept that inte-
grated sets of parameterized skills can be designed for highly dy-
namic motions. We present three primary contributions:

• Parameterization: Given a single motion-capture example clip
for each skill, we develop closed-loop feedback controllers
for parameterized versions of the motion. This entails learn-
ing parameterized low-dimensional feedback strategies and
developing a multidimensional continuation method.

• Sequential Composition: We introduce a structured composi-
tion scheme for transitioning between running and the obsta-
cle clearing maneuvers. The composition scheme is coupled
to both the offline parameterization and the online planning.
In this way the running steps used to approach an obstacle
can be adjusted in the best way to achieve more realistic and

http://doi.acm.org/10.1145/2366145.2366168
http://portal.acm.org/ft_gateway.cfm?id=2366168&type=pdf

Figure 2: System overview, excluding the online planning.

robust obstacle clearing.

• System: The overall system provides insights into the repre-
sentations and algorithms that can be used to develop parame-
terized and composable controllers for a set of highly dynamic
motions, beginning from a single motion capture clip for each
skill.

Figure 2 gives an overall system overview of the three offline stages
involved in our clips-to-terrain-running-skills pipeline. First, a sin-
gle controller is developed for each skill. This involves two steps:
(a) given a single motion clip as input, reference trajectories are
determined for the sensory state and actions that will define a base-
line for open-loop control; and (b) learning a reduced-order linear
feedback policy that then provides closed-loop control around these
reference trajectories. Second, a parameterization process is used
to transform the single controller instance obtained from the previ-
ous stage into a family of controllers that can produce motion vari-
ations, such as clearing obstacles of different heights, or running
with a range of speeds and turning rates. Third, the composition of
the skills is considered by developing controllers dedicated to the
transition motions between running and the obstacle clearing skills.
This involves the combined optimization of the affine feedback pol-
icy as well as the best choice of entry running speed and exit speed
that yield robust transitions.

2 Related Work

There exists a large body of work related to the general problem we
wish to solve. We only discuss the most related and recent publica-
tions here due to space constraints. For the clarity of presentation,
we classify these papers into themes based on their principal contri-
butions, even though specific papers may relate to several themes.

Kinematic Methods: Motion-graphs style techniques [Arikan
and Forsyth 2003; Kovar et al. 2002; Lee et al. 2002; Kovar and
Gleicher 2004] organize a corpus of motion capture data into graphs
that encapsulate connections among segments of motion. Rein-
forcement learning extends motion graphs through the use of con-
trollers that are trained offline, so that the best motions for a given
task can be selected and interpolated online at interactive rates [Mc-
Cann and Pollard 2007; Treuille et al. 2007; Lee et al. 2009; Lee
et al. 2010a]. Parametric motions and deformable motions [Heck
and Gleicher 2007; Min et al. 2009; Choi et al. 2011] have also been
explored for interactive motion synthesis or navigation in cluttered
virtual environments. These systems usually require rich motion

examples, and do not guarantee physical realism, particularly for
situations where the virtual character interacts with the environment
through a multitude of contacts.

Physics-based Methods: Trajectory optimization can incorpo-
rate physics constraints, in addition to user constraints and statis-
tical models [Safonova et al. 2004; Chai and Hodgins 2007; Wei
et al. 2011]. Much research effort has been focused on developing
feedback-based control strategies for locomotion tasks [Yin et al.
2007; da Silva et al. 2008; Muico et al. 2009; Coros et al. 2009;
Coros et al. 2010; Lee et al. 2010b; Kwon and Hodgins 2010]. Con-
troller optimization is also commonly used to further improve the
capability and robustness of the basic locomotion controllers [Yin
et al. 2008; Wang et al. 2009]. Locomotion control and planning
have been tackled in an integrated fashion by planning with sim-
plified dynamics or abstract models, and then optimizing for full-
body trajectories to follow the low-dimensional plans [da Silva et al.
2008; Mordatch et al. 2010; Ye and Liu 2010]. Highly dynamic
motions, such as handspring vaults [Hodgins et al. 1995] and snow-
board stunts [Zhao and van de Panne 2005] have been studied also,
but with a significant degree of manual design effort. To our knowl-
edge, motions inspired by parkour, such as those investigated in this
paper, have rarely been looked at.

Recently Liu et al. [2010] demonstrated automatic control re-
construction for arbitrary motions, including contact-rich motions.
However, their reconstructed controls are open loop in nature and
do not handle perturbations. Any changes in the environment or
initial state require an additional pass of adaptation. We use the
control reconstructions from Liu et al. as feed-forward reference
controls to learn closed-loop feedback policies that are robust to
run-time perturbations.

Control Composition: Research on the composition of control
policies for heterogenous motions is relatively sparse. Direct pa-
rameter interpolation is sufficient for the transitions between vari-
ous quadruped gaits [Coros et al. 2011]. For bipeds, the composable
controllers of Faloutsos et al. [2001] learn an oracle that predicts the
success or failure of a given controller as a function of the given cur-
rent state. Another approach is to progressively populate a space of
transition motions by developing new transition controls whenever
unsuccessful transitions are encountered [Sok et al. 2007]. Linear
Bellman combination [da Silva et al. 2009] can interpolate tempo-
rally aligned optimal policies for similar tasks with different bound-
ary conditions. Composite controllers that track multiple trajecto-
ries in parallel have been demonstrated to improve robustness for
locomotion tasks [Muico et al. 2011]. In our work, we systemat-
ically optimize for composition controls between running and pa-
rameterized obstacle clearing maneuvers, and in addition use online
refinement of the running steps that approach obstacles.

3 Feedback Control from Single Example

We captured one example motion for each of four parkour skills:
running, jumping, speed vaulting, and drop-rolling. Running is the
main locomotion mode for fast terrain traversal, while the other
skills are executed when the character encounters terrain variations
or obstacles, such as a stair or a cliff. Hereafter we will refer to
these skills as obstacle clearing maneuvers.

We use the sampling-based method of Liu et al. [2010] to construct
open-loop controls from a single example of each of these actions.
These controls are PD (Proportional Derivative) target-angle tra-
jectories that are computed using an offline search procedure and
therefore cannot adapt to external perturbations. In search for more
robust closed-loop control policies, we use an optimization-based

approach to learn reduced-order affine feedbacks around the refer-
ence open-loop states s̃ and actions ã. More specifically, we apply
changes in control actions δa as an affine function of changes in
sensory observations δs:

δa = Map ·Msp · δs + â (1)

where
δa = a− ã, δs = s− s̃ (2)

The affine term â = 0 for the default controllers constructed from
motion examples, but will be nonzero later on during controller pa-
rameterization. In other words, the control laws are linear in this
stage and affine in later stages. Msp is an r × n sensory projec-
tion matrix that projects high-dimensional sensory observations to
a reduced-order state space; and Map is an m × r action projec-
tion matrix that maps the reduced-order state back to the full action
space. The reduced-order feedback policy has r(m+n) parameters,
and hereafter we will denote these parameters as M and simplify
Equation 1 as:

δa = Mδs + â (3)

We denote the full-body state as s = {h0,v0,q0, q̇0,qj, q̇j}, j ∈
{1, ..., k}, where h0 is the height of the root; v0,q0, q̇0 are the
linear velocity, the orientation, and the angular velocity of the root.
qj, q̇j are the rotation and angular velocity of joint j in its parent
body’s coordinate frame. k is the number of joints of the character.
The full action set comprises the full-body target pose a = {qj}.
For our character model, s is 88 dimensions and a is 39 dimen-
sions. Learning feedback policies on these high dimensional state
and action sets is simply too slow and runs into the problem of over-
fitting. We thus manually choose low-dimensional action vector a
and sensory vector s for each motor skill. We note that the remain-
ing degrees of freedom are simply controlled using the open-loop
control provided by the method of Liu et al. [2010].

Running: We rely on human insights to choose several key
sensory properties and action parameters for running. s =
{q0, c, ċ,d}, where q0 is the root orientation; c and ċ are the CoM
(Center of Mass) position and linear velocity; and d is the 3D vector
pointing from the CoM to the stance foot. We choose the hips and
the waist as key joints for action: a = {qswhip,qsthip,qwaist}.
To achieve more coordinated spinal postures, δqwaistis also ap-
plied to the chest joint. The manually-chosen state and action vec-
tors are 12 and 9 dimensions, respectively.

We use a stochastic global optimization technique, Covariance Ma-
trix Adaption (CMA) [Hansen 2006], to optimize the affine feed-
back structure in Equation 3. The optimization begins from an ini-
tial guess consisting of zero entries. For running control, the opti-
mization is challenging due to the requirement for balance and the
complexity of the dynamical system. We therefore break the op-
timization into multiple stages, each with increasing difficulty, and
each using the solution of the previous stage as a starting point. Due
to limited space, we refer interested readers to [Ding et al. 2012] for
details on the learning process for the running feedback control.

Jumping: Jumping shares the same action set as running. The
sensory variables for jumping, however, additionally include the
position of the swing foot with respect to the root, for better control
of the landing location on the higher terrain.

Vaulting: Vaulting is a more complex movement skill than jump-
ing, and a single time-invariant feedback matrix for the full course
of the maneuver is inadequate to produce robust and realistic con-
trols throughout the motion. Following the common choice of mo-
tion decomposition developed by parkour experts [Edwardes 2009],

we segment a full vault into three phases: phase 1 - one hand
reaches out for the top of the obstacle, and both legs lift off from
the ground; phase 2 - the body passes over the obstacle and one
foot lands on the other side of the barrier; phase 3 - the character
continues to move fluidly in the direction. Phase 1 starts from the
first frame and ends when the CoM passes the hand-obstacle con-
tact; phase 2 then starts until one foot touches the ground; phase 3
continues further until the end of the vault. The multi-phase feed-
back policy for vaulting then becomes δa = Mkδs + âk, where
k ∈ {1, 2, 3} is the phase index that correlates with the charac-
ter state and simulation time. The number of parameters of the
reduced-order feedback matrices is r × (m + n) for single phase
motions such as jumping, but is r × (m +

∑
nk) for multi-phase

motions such as vaulting. Interested readers can preview Table 1
for the exact dimensionality of the optimization for each skill.

The sensory/action sets for vaulting are the same as those for jump-
ing, except that during phase 1 we augment the sensory state with
the position of the supporting hand in order to allow for better con-
trol of the hand-obstacle contact location, as will be detailed later
(see Equation 11).

Drop-Rolling: We segment a drop-roll into four phases: phase 1 -
the character lifts off from the higher terrain; phase 2 - the character
jumps down to the lower terrain; phase 3 - the character rolls on the
lower terrain; phase 4 - the character stands up and continues to
move fluidly in the direction. Phase 1 starts from the beginning and
ends when both feet leave the ground; phase 2 then starts until both
feet land on the lower terrain; phase 3 rolls and ends when the CoM
passes over the kneeling lower leg; phase 4 continues further to
stand up until the end of the motion. We augment the basic running
sensory set to include the left and right foot positions with respect
to CoM during phase 2 and phase 3, for better control of the landing
position in drop-rolling.

For all the clearing maneuvers, we again use CMA to optimize for
the affine feedback policy. As these skills are short in time and
non-repetitive, the feedback terms are very easy to optimize for. A
couple of CMA iterations, with goals similar to Equation 10 are
already sufficient.

4 Parameterization

The above closed-loop controllers are learned from a single exam-
ple motion for each skill, and thus only work for running styles and
obstacles that are close to those of the example motions. For expres-
sive terrain crossing, parameterized feedback controllers that work
for a large range of parameters are desirable. More specifically, we
wish to achieve running at various speeds and turning rates, and
obstacle clearing maneuvers over barriers of varying heights.

4.1 Running Parameterization

For running, we consider two dimensions for parameterization:
θ = (φ, v), where φ is the turning angle per step and v is the
running speed. From the above learned running policy at a default
speed with no turning, we wish to search for a series of parameter-
ized closed-loop affine controllers of the following form:

δa = Mθδs + âθ (4)

4.1.1 Action Set Augmentation

The action set a for the default running is too restrictive for the pa-
rameterization task now. For example, it is symmetric in nature and
apparently a character cannot turn with a symmetric controller. We

thus augment the action set as a = {al,ar, α, β}, where al and
ar are the same as the action set before, but are only applied either
for the left-stance steps or the right-stance steps to generate asym-
metric gait for turning. α and β are scaling parameters in space
and time, respectively, to facilitate the synthesis of natural running
in different speed. The augmented action set is a 20-dimensional
vector.

The parameter α is applied to the full-body reference state and ref-
erence action. It is mainly for scaling the spatial range of motion,
hinting that joints in slower running tend to rotate less. We apply α
for positions and velocities as follows:

x = α(x− x̄) + x̄ x ∈ {h0,q0,qj} (5)
ẋ = αẋ ẋ ∈ {v0, q̇0, q̇j} (6)

x̄ indicates the mean of a quantity in the reference trajectory, except
that for the root orientation we use zero mean in favor of an upright
trunk for the running character. Note that for rotations represented
in quaternions, only the rotation angles are scaled and the rotation
axes remain the same. This is equivalent to a SLERP (Spherical
Linear Interpolation) interpolation with the Identity quaternion.

The parameter β linearly scales the duration of the reference trajec-
tory, so that the desired motion can reference a sped-up or slowed-
down version of the reference. In effect β adapts the running pace
with respect to the running speed. The above model for scaling the
reference motion amplitude and timing significantly improves the
quality and extends the range of parameterization from the default
controllers, as our results in Table 1 show.

4.1.2 Continuation

When the character runs forward at the default speed θ0, Mθ0 in
Equation 4 is exactly the feedback matrix found in Section 3, and
âθ0 = 0. From this initial closed-loop running, we can use contin-
uation methods [Yin et al. 2008] to explore the parameter space θ
and generate a series of feedback controls for running with various
turning rates at various speeds. More specifically, we can sample
a series of running speed {vk}, which collectively span the target
speed range, with small and gradual increments or decrements, as
shown in Figure 3(a). Then from each vk we sample along the axis
of turning angle φ as in Figure 3(b).

The output of the above continuation process is a collection of affine
policies Mθk and âθk . We can then use Radial Basis Functions
(RBFs), as schematically shown in Figure 3(c), to fit to the controls
at the sample points (RBF centers). The controls for any θ can
then be efficiently computed on demand. We use the smoothest
interpolant RBF [Carr et al. 2001] as follows:

f(θ) = p(θ) +

N∑
i=1

λiϕ(|θ − θi|) (7)

where p is a polynomial of low degree. We use 1-degree polyno-
mial p(θ) = c1 + c2φ + c3v. ϕ is the basis function with many
choices. Basis functions with non-compact support, such as the thin
plate spline and the biharmonic spline, are better suited to extrapo-
lation than those with compact support, such as Gaussians. We thus
choose the biharmonic spline ϕ(r) = r for its simplicity and good
extrapolation quality.

The continuation and interpolation process as schematically shown
from Figures 3(a) to (c) is straightforward, but can be improved
significantly if we utilize the extrapolation capability of the RBF.
More specifically, in the first iteration we choose to optimize con-
trols for a few samples in the parameter space, as shown by the
green dots in Figure 3(d). We then immediately fit an RBF to these

(a) (b) (c) (d)

Figure 3: Two dimensional continuation: (a) continuation along
one axis first; (b) continuation along the other axis; (c) RBF inter-
polant to cover the full parameter space. (d) alternating extrapola-
tion and continuation in the plane. Green dots are initial working
samples; blue triangles are extrapolated samples that work; and
red squares are the ones that fail.

samples and extrapolate to the space surrounding the initial sam-
ples. Some nearby samples, represented by the blue triangles, are
successful in the sense that the parkour avatar can accomplish the
corresponding maneuver under the affine control generated by the
RBF model. More distant samples, represented by the red squares
in the figure, are more likely to fail. We select the outer boundary of
the blue triangles for further optimization based on the initial RBF
prediction of the controls. These improved blue triangles are then
marked to become part of the set of ‘solved’ samples (green cir-
cles). The continuation process then repeats, i.e., fitting a new RBF
to all solved examples, extrapolating, and optimizing the bound-
ary, until we have fully covered the desired parameter space or no
further improvements can be achieved.

The above predictor-corrector method implements a multi-
dimensional continuation process that can cover a quasi rectangu-
lar space of [-6, 6]◦ × [2.0, 5.0]m/s within 11 hours on a multi-
core computer. Here a quasi rectangle means there are a few failed
samples near the boundary of the rectangular parameter space (Fig-
ure 6). As compared to a naive one-dimensional continuation pro-
cess, utilizing the prediction power of the RBF model gains a speed-
up of more than two folds. Note that in actual implementation we
only need to optimize for the [0, 6]◦ region of the direction pa-
rameter space. In other words, we only optimize for controls for
left turns, and then mirror the controls to get right turns. We also
enforce control symmetry for straight line running with φ = 0.

4.1.3 Optimization

For some chosen continuation parameters θ∗ = (φ∗, v∗), for exam-
ple the initial samples and the boundary blue triangles in Figure 3,
we need to optimize the controls either from the default zero or from
the controls derived from the latest RBF model. The optimization
objective contains terms that penalize early failure (defined as the
character falling or an unintended contact with the obstacle), ex-
cessive head movement, and deviations from the desired direction,
speed, and stepping frequency. These are defined as:

E = wt(NdTc − Ts) +
wh
Ts

∫
||dh − d̄h||dt

+
1

Ns
(wφ|φi − φ∗|+ wv|vi − v∗|+ wf |fi − f∗|) (8)

where Nd = 20 is the desired number of running cycles, Tc is the
duration of one running cycle in the reference. The simulation is
terminated once the character falls or when the desired number of
cycles is reached. Ns is the actual number of cycles of the simu-
lation, whose termination time is denoted as Ts. The second term
stabilizes head movement, where dh is the head position with re-
spect to CoM in the character’s facing frame, and d̄h is its average
position.

φi, vi and fi are the turning angle, the speed and the stepping
frequency of the stride cycle i, while φ∗, v∗ and f∗ are their de-
sired values. Note that the continuation parameter θ∗ only consists
of (φ∗, v∗). We estimate f∗ heuristically from the desired speed:
(f∗/cf) = 0.2(v∗/cv)+0.8. This relationship is to guide the run-
ning pace to change in accordance with the speed, commonly ob-
servable from natural human running [Gutmann et al. 2006]. With-
out enforcing such a relationship, we can still succeed in optimizing
running of different speed, but the motion will look like a slow mo-
tion of the same running for example, rather than a natural running
motion where the pace adapts to the speed accordingly. Adding
the space and time scaling parameters α and β into the action set
alone, as described in Section 4.1.1, does not eliminate this prob-
lem completely. We therefore designate an estimated stepping fre-
quency f∗ to guide the optimizer towards desirable solutions. We
approximate the normalization coefficients cf and cv by the aver-
age stepping frequency and speed of the captured example running,
i.e., cf = 4.2 steps/s and cv = 4.4m/s.

4.2 Clearing Maneuver Parameterization

For obstacle clearing skills, we consider the height of the obstacle
h for parameterization:

δa = Mhδs + âh (9)

Different from running parameterization, optimizing only for the
control bias term âh is already enough to generate parameterized
clearing maneuvers. So we leave Mh fixed at the value of the de-
fault controller until later in the composition stage of Section 5.1.

In addition to optimizing for the affine controls, we also optimize
two additional parameters: uh is the distance from the stance foot
to the obstacle at the beginning of the maneuver; and vh is the de-
sired initial speed. The optimized uh will later be used in motion
composition and planning so that the character can plan to clear an
obstacle of height h from an optimal distance. vh will later be used
to initialize the running speed that leads to the clearing maneuver
during the optimization for motion composition. These two param-
eters enable more natural maneuvers that start further away from
the obstacle with faster speed for clearing higher obstacles.

Similar to running parameterization, we need to augment the action
set with the scaling parameters α and β to parameterize jumping
and vaulting across a large range of obstacle height. Drop-rolling,
however, does not need the spatial scaling parameter α. We also
utilize the predictor-corrector method for continuation within the
parameter space, but the RBF model is one-dimensional for clear-
ing maneuvers instead of two-dimensional for running.

4.2.1 Optimization

The cost functions for optimizing clearing maneuvers for a chosen
parameter share a common structure as follows:

Eh = wcEc + wbEb + wpEp (10)

Ec controls desired contacts and penalizes unwanted collisions. It
is the most important term for guiding clearing maneuvers to over-
come obstacles. Different maneuvers use differentEc forms, which
are generally intuitive and will be explained shortly. Eb measures
how balanced the end state is. A clearing maneuver cannot be con-
sidered fully successful if the character falls after crossing the ob-
stacle. We use Eb = ||d − d̃|| to compare the stance foot position
to its desired position in the reference, both computed with respect
to CoM. The term Ep = w

T

∫
dp(p, p̃) + dp(pe, p̃e) + dr(re, r̃e)

measures the difference between the output motion and the refer-
ence motion. The distance functions dp and dr measure the pose

Figure 4: Parameters illustration for optimizing obstacle clearing
skills: (a) jumping; (b) vaulting phase 1; (c) vaulting phase 2.

and root difference from their references, respectively. The latter
two terms weigh the end state difference more to facilitate the tran-
sition from clearing back to running.

Jumping : We use contact control term Ec = |h − hf |+ for
jumping. Here hf is the lowest height of the contact foot (see Fig-
ure 4(a)) when it hits a stair of height h. The one-sided hat function
|x|+ is defined as |x|+ = max(x, 0). It penalizes the difference
between the height of the foot and the height of the obstacle when
the foot is below the obstacle. This term shapes the optimization to
stay away from undesired collisions.

Vaulting: The contact control term for vaulting is defined as:

Ec = wf1(|hd − hl|+ + |hd − hr|+) + wf2||dr − d̃r||

+ wh1(|h− hh|+ + dh) + wh2||dh − d̃h|| (11)

The first term guides both feet to overpass the obstacle. hl and hr
are the lowest height of the feet when they pass the obstacle, and hd
is the desired minimal height for obstacle clearance (Figure 4(c)).
The second term controls the contact position of the first landing
foot, i.e., the right foot. dr is the vector from the right foot to CoM.
The third term guides the optimizer to put the hand onto the center
of the obstacle for support of the full body. h is the height of the
obstacle and hh the lowest height of the hand when it contacts with
the obstacle. dh is the distance between the hand and the center of
the obstacle (Figure 4(b)). The last term controls the hand position
dh with respect to CoM to stay close to the reference, because the
hand supports the body when both feet are in the air similar to what
a stance foot does during normal locomotion.

To vault high obstacles, the stance knee and shoulder are also key to
generating the necessary thrust and support. Therefore we add these
joints to the action set to easily discover control laws to overcome
high barriers. In addition, our character’s spherical hand represen-
tation cannot model the capability of firm grasping of human hands
when in contact with the obstacle. We therefore treat the hand-
obstacle contact as a ball-and-socket joint from the instance when
contact is first established until when the character’s CoM passes
the contact location, which corresponds to the end of phase 1 for
vaulting.

Drop-rolling: Drop-rolling usually does not involve unexpected
collisions and therefore there is no Ec term. However, rotation and
balance need to be controlled more precisely for drop-roll. We use
an Eb term that is a weighted sum of the angular momentum de-
viation from the reference at the end of phase 1, the feet to CoM
deviations at the end of phase 2, and the stance foot to CoM devia-
tion at the end of phase 3: Eb = wL||L− L̃||+ wd(||dl − d̃l||+
||dr − d̃r||+ ||d− d̃||).

Figure 5: Three-phase composition scheme and control blending.
The solid lines are the control quantities for the individual skills,
and the dashed lines are the blended quantities for transitions.

5 Composition

To achieve parkour-style efficient movement around obstacles
through a series of fast running and obstacle clearing maneuvers,
the above individually developed parameterized controllers for dif-
ferent skills need to be composited dynamically for automatic ter-
rain crossing. The highly dynamic nature of parkour motions means
that the transitions in-to and out-of the parkour stunts are more chal-
lenging than for mundane tasks. In addition, our reference motions
were captured from different subjects at different times, and are not
even kinematically continuous. We therefore utilize a structured
feedback policy search, as shown in Figure 5, for the best composi-
tion scheme: transIn – to transition running to clearing; clear – the
actual obstacle clearing motion; transOut – to exit clearing motion
and continue with running.

5.1 Three-phase Composition Scheme

Suppose we start from a running with parameter θin, which follows
the control law δa = Mθinδs + âθin . Then when approaching an
obstacle, we directly switch to the clearing maneuver of parameter
h, which follows the control law δa = Mhδs + âh. Such direct
transitions, however, usually fail because the discrepancy δs be-
tween the end state of the running and the start state of the clearing
maneuver is too large for the affine feedback laws to handle. We
therefore employ control blending, which will be discussed shortly
in Section 5.3, and further optimize the controls of the last running
step and the controls of the clearing maneuver as follows:

δa = M
′
θin

δs + âθin (12)

δa = M
′
hδs + âh (13)

where M
′
θin

and M
′
h can incorporate the necessary adjustments to

achieve a successful transition. We initialize them with Mθin and
Mh, which are known after the previous parameterization step. We
assume the running preparation of Equation 12 can be done within
one running step as labeled by the transIn segment in Figure 5.
After this preparation running step, then Equation 13 takes over as
labeled by the clear segment in Figure 5.

Once the obstacle clearing movements finish, the character needs
to regain balance and continue to run. Directly switching to a run-
ning with parameter θout again usually fails. We thus execute a
SIMBICON-style running controller δa = Sδs during the tran-
sOut phase of Figure 5 to regain balance. The SIMBICON-style
linear running controller has lower dimensions in both the sensory
set and the action set [Yin et al. 2007], compared to the affine run-
ning controller we developed in Section 4.1. More specifically,
s = {ċ,dst,dsw} is six dimensional, and a = {qx, qz} is two
dimensional. ċ is the planar velocity of the CoM, and dst and dsw

are the planar vectors from the CoM to the stance and swing foot,
respectively. qx and qz are the swing hip rotations around the hori-
zontal axes. The SIMBICON-style running controller uses the ref-
erence motion of the affine running controller of the same speed as
its reference trajectory as well, but it targets mainly on balance con-
trol. After the balance has been regained and the running has been
stabilized, we then switch to the regular affine running controller
with parameter θout.

To summarize, the free parameters for the three-phase composition
scheme include:(θin,M

′
θin

,M
′
h,Sθout). θin is the entering run-

ning velocity and angle. We always use zero turning angle as the
entering direction, and initialize the velocity component with vh
found in the parameterization step for clearing maneuvers. This
three-phase composition scheme is coupled with not only the pre-
vious motion parameterization step, but also the subsequent motion
planning step. The best running parameters θin leading up to the
obstacle-clearing maneuvers will later inform the planner so that for
an obstacle of a given height, the preparation running steps can be
adjusted to the proper speed for more realistic and robust obstacle
clearing. Interested readers can preview the exact dimensionality of
the optimization problem for each skill in Table 1.

5.2 Optimization

We again use CMA to optimize for the composition policy. We first
only optimize (θin,M

′
θin

,M
′
h) for the first two phases transIn

and clear. For each simulation trial, i.e., each CMA sample, the
character first runs at parameter θin for two steps, then it executes
transIn and clear and stops at the end of the clearing motion. The
cost function of the optimization is the same as Equation 10, which
measures the success of the clearing maneuver.

We run the CMA optimization until convergence. Then we reset the
reference motion using the simulated motion of the converged con-
trols, and run the CMA optimization for a second round to further
enhance the robustness of the composition controls. For the second
optimization stage, we also sample the end states of a number of
runs around parameter θin and use these as perturbed test states to
further optimize the controls obtained from the initial optimization.
After the CMA optimization converges again, we sample the end
states of the clearing maneuvers and use their average speed as the
exiting running velocity and zero as the exiting angle for θout.

We then optimize for Sθout in the transOut phase. A SIMBICON-
style and a regular style running controller of parameter θout are
executed for a total of ten steps. The cost function of this optimiza-
tion problem measures the success of the running:

E = wt(NdTc − Ts) +
wh
Ts

∫
||dh − d̄h||dt+

ws
Ts

∫
dp(s, s̃)dt

(14)
The first two terms are the same as those of Equation 8. The third
term measures the convergence to the running reference.

We reiterate that the above optimization targets a specific obstacle
height h. We need to perform a continuation process similar to
Section 4.1.2 to be able to compose running and clearing maneuvers
to cross obstacles of different heights.

5.3 Reference Control Blending

Blending, or the idea of smoothing discontinuities within a time
window, are commonly used for kinematically transition between
motion examples [Arikan and Forsyth 2003; Kovar et al. 2002; Lee
et al. 2002]. In our case when transitioning between different mo-
tion skills and control policies, discontinuities occur in the refer-
ence states s̃ and actions ã. As a result, simulated motions can be

Figure 6: The step length l with respect to the running parameter
θ = (φ, v). The two outliers correspond to high-speed runs for
which the optimization failed during parameterization.

jerky around the transitions, and sometimes even fail the desired
tasks, e.g., failing to vault over an obstacle. We therefore blend
the reference motion s̃ during the transIn and transOut segments
of the composition for one running step, as illustrated in Figure 5.
We can also choose to blend ã as well. However, the reconstructed
reference controls from Liu et al. [2010] are PD target-angle tra-
jectories that offset the reference motion s̃. Hence as long as we
re-calculate the reference actions ã from blended reference states s̃,
we in effect have blended the reference control as well. With the
blended reference states and actions, the character can transition
more easily and the simulated motions become smoother.

6 Planning

We assume that a freerunner can only see and plan for the next im-
pending obstacle, rather than for all the obstacles ahead. We thus
focus on local planning for the first impending obstacle, and use a
step-based kinematic planner with limited-horizon. Figure 6 shows
the relationship between the step length and the speed and turning
angle of our parameterized running controllers. We will hereafter
call this relationship the step-length model, and note that step length
is not affected by turning. All our motions need to approach the ob-
stacles in a perpendicular fashion in order to carry out the skills
with maximal success. We thus use a simple direction tracking al-
gorithm to produce perpendicular approaches.

The step-length model also shows that the step-length l is nearly
linear with respect to the running speed v, and the fitted model is
l = 0.2v + 0.17. We formulate speed planning as a constrained
optimization:

minwu(u− uh)2 +
∑
wi(vi − vi−1)

2

s.t. vn = vin
(15)

where n is the estimated number of steps. u is the distance to the
obstacle when the clearing maneuver is ready to execute, and uh is
the optimized distance to the obstacle during the parameterization
described in Section 4.2. vn is the end velocity after n running
steps, and we wish it to be as close as possible to the optimal starting
velocity vin for clearing skills, which is taken from θin, one of the
optimized parameters of the composition described in Section 5.1.
We estimate the number of steps n based on the current distance to
uh, the current velocity and the desired velocity vin.

We solve the above planning model analytically at the beginning
of each step for the desired running velocities. The output of the
planner is a series of desired vi that can lead the character to the
right spot with the right speed ready for obstacle clearing. Since
our character is physics-based and therefore has transient effects,
the actual motion will not exactly follow the planned motion. We
thus replan at every step according to the current character state and
the goal state.

7 Results

We have implemented all the optimization and control components
in C++. We use the Open Dynamics Engine (ODE) version 0.11 to
simulate our character. The simulation time step is 0.5ms and the
coefficient of friction is 0.8. The kinematic and dynamic properties
of our character model are directly taken from Liu et al. [2010].
The simulation runs faster than real-time on a common laptop.
This includes the online planning component, the application of the
learned reduced-order feedback policies, and the forward dynam-
ics. The compute costs are dominated by the forward dynamics
computations.

All the offline components are tested on a 24-core machine with
Intel Xeon X5660@2.80GHz CPU. Adding a new skill to the park-
our system requires between 3∼8 hours of computation, depend-
ing on the difficulty, dimensionality, and desired parameter space
of the motion skill. Table 1 shows a more detailed breakdown of
the computational cost for each optimization component. There are
multiple possible choices for the reduced-order feedback matrices
in Equation 1, and here we only show results using 3rd order re-
duced feedback matrices. That is, Map is m× 3 and Msp is 3×n
for all the skills. For more analysis of the impact of the chosen or-
der for the reduced feedbacks, we refer interested readers to [Ding
et al. 2012].

A practical simplification in the development of the controls for the
transOut phases is to share the same controller across all the obsta-
cle clearance skills. Furthermore, the SIMBICON-style controller
is quite robust and we can share the controllers optimized for cho-
sen speeds of (2.0, 2.5, 3.0, 3.4, 3.8) m/s. The total cost of this
optimization is 1.9 hours, and we do not need to redo it for new
skills. Only the optimization for the first two phases of the compo-
sition is task dependent.

Figure 7 shows two examples from the vaulting parameterization.
The upper row is a vaulting over an obstacle of 70cm, and the lower
row an obstacle of 90cm. Note that our character model is 170cm in
height. The middle column of Table 1 gives the ranges of obstacle
heights that our character can jump onto, vault over, and drop-roll
over. We illustrate the results of composition in Figure 8. We also
encourage readers to better evaluate the quality of these results from
the accompanying video. The video additionally illustrates the fail-
ure mode for attempting to vault an obstacle that is too high.

Due to the dynamic nature of the motions, the simulation is not
guaranteed to accomplish an arbitrary terrain crossing task with
a 100% success rate. To estimate the robustness of our com-
posed controllers, for each maneuver we did a simple test where
we put the obstacle of the default height at a fixed location, and
start the parkour avatar at a distance d from the obstacle, with
d ∈ [30, 100]m, sampled every 0.1m. The success rate for the
jump, speed-vault, and drop-roll are 87%, 90%, and 83%, respec-
tively.

Skill Feedback Control #Dim Parameterization #Dim Explored Composition #Dimension
(minutes) (hours) Parameter Range (hours)

run 12.0 63 10.6 83 [-6, 6]◦ × [2.0, 5.0] m/s transIn+clear transOut transIn+clear transOut
jump <1.0 72 0.5 13 [0.1, 0.7] m 2.3

1.9
136

12vault <1.0 171 1.6 40 [0.6, 1.0] m 6.3 235
drop-roll <1.0 189 0.9 41 [0.9, 2.0] m 5.6 253

Table 1: Performance statistics and dimensionality of each component optimization for the parkour skills.

Figure 7: Parameterization of the vault. Upper row: 70cm obstacle; lower row: 90cm obstacle. Every sixth frame is shown from a 30-fps
sequence with a fixed camera.

8 Conclusions

Creating controllers for highly dynamic human motions is challeng-
ing. We have presented a framework for learning robust control
strategies for a set of highly agile, parameterized, parkour-style mo-
tions. Key to achieving the results is a strategy for learning feed-
back policies that are parameterized across a range of motions, an
efficient multidimensional continuation procedure, and a process
for learning feedback-based transition policies. These components
form a flexible pipeline for developing robust and agile skills based
on a single motion capture exemplar per skill.

In the future, we wish to experiment with more parkour skills, such
as flips and wall climbs. We would also like to address several lim-
itations of the methods proposed in this paper. Currently the frame-
work is only partly automated and tackles a limited set of skills. The
addition of a new skill requires authoring of the objective function,
insight into the phases of a motion, and insight into relevant features
and action variables for the motion. However, the shared structure
found across the four parkour motions demonstrated to date leads
us to believe that in many cases new motions will require only fine
tuning of existing choices rather than requiring completely new ob-
jective functions and relevant state variables. We further intend to
develop motion planning strategies that allow for earlier anticipa-
tion, viewing obstacles in the world in terms of its affordances, and
predictions of the probability of success in advance of motion ex-
ecution. We expect that the robustness of individual skills can still
be further improved.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful
feedback. This work was partially supported by Singapore Min-
istry of Education Academic Research Fund Tier 2 (MOE2011-T2-
2-152) and Tier 1 (R-252-000-429-133). Michiel van de Panne was
supported by NSERC and GRAND.

References

ARIKAN, O., AND FORSYTH, D. A. 2003. Interactive motion
generation from examples. ACM Transactions on Graphics 21,
3, 483–490.

CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL,
T. J., FRIGHT, W. R., MCCALLUM, B. C., AND EVANS, T. R.
2001. Reconstruction and representation of 3d objects with ra-
dial basis functions. In SIGGRAPH ’01, 67–76.

CHAI, J., AND HODGINS, J. K. 2007. Constraint-based motion
optimization using a statistical dynamic model. ACM Transac-
tions on Graphics 26, 3, Article 8.

CHOI, M. G., KIM, M., HYUN, K., AND LEE, J. 2011. De-
formable motion: Squeezing into cluttered environments. Com-
puter Graphics Forum (EUROGRAPHICS 2011) 30, 2, 445–453.

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2009.
Robust task-based control policies for physics-based characters.
ACM Transctions on Graphics 28, 5, Article 170.

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2010. Gen-
eralized biped walking control. ACM Transctions on Graphics
29, 4, Article 130.

COROS, S., KARPATHY, A., JONES, B., REVERET, L., AND
VAN DE PANNE, M. 2011. Locomotion skills for simulated
quadrupeds. ACM Transactions on Graphics 30, 4, Article 59.

DA SILVA, M., ABE, Y., AND POPOVIĆ, J. 2008. Interactive
simulation of stylized human locomotion. ACM Trans. Graph.
27, 3, Article 82.

DA SILVA, M., DURAND, F., AND POPOVIĆ, J. 2009. Linear
bellman combination for control of character animation. ACM
Trans. Graph. 28, 3, Article 82.

DING, K., LIU, L., VAN DE PANNE, M., AND YIN, K. 2012.
Learning reduced-order feedback policies for motion skills.
Tech. Rep. TR-2012-06, University of British Columbia.

EDWARDES, D. 2009. The Parkour and Freerunning Handbook,
first ed. HarperCollins Publishers.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
2001. Composable controllers for physics-based character ani-
mation. In Proceedings of SIGGRAPH 2001, 251–260.

GUTMANN, A. K., JACOBI, B., BUTCHER, M. T., AND
BERTRAM, J. E. A. 2006. Constrained optimization in human
running. The Journal of Experimental Biology 209, 622–632.

Figure 8: Control composition. Top row: running and jumping; middle row: running and vaulting; bottom row: drop-rolling. Every
third(jump), fifth(vault), and seventh(drop-roll) frame is shown from a 30-fps animation with a tracking camera.

HANSEN, N. 2006. The cma evolution strategy: A comparing
review. In Towards a New Evolutionary Computation, 75–102.

HECK, R., AND GLEICHER, M. 2007. Parametric motion graphs.
In Proceedings of the 2007 symposium on Interactive 3D graph-
ics and games, 129–136.

HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND
O’BRIEN, J. F. 1995. Animating human athletics. In Pro-
ceedings of SIGGRAPH 1995, 71–78.

KOVAR, L., AND GLEICHER, M. 2004. Automated extraction and
parameterization of motions in large data sets. ACM Transac-
tions on Graphics (TOG) 23, 3, 559–568.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. In SIGGRAPH 2002 Conference Proceedings, 473–482.

KWON, T., AND HODGINS, J. 2010. Control systems for human
running using an inverted pendulum model and a reference mo-
tion capture sequence. In SCA ’10: Proceedings of the 2010
ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation, 129–138.

LEE, J., CHAI, J., REITSMA, P. S. A., HODGINS, J. K., AND
POLLARD, N. S. 2002. Interactive control of avatars animated
with human motion data. ACM Transactions on Graphics 21, 3,
491–500.

LEE, Y., LEE, S. J., AND POPOVIĆ, Z. 2009. Compact character
controllers. ACM Transctions on Graphics 28, 5, Article 169.

LEE, Y., WAMPLER, K., BERNSTEIN, G., POPOVIĆ, J., AND
POPOVIĆ, Z. 2010. Motion fields for interactive character loco-
motion. ACM Transctions on Graphics 29, 6, Article 138.

LEE, Y., KIM, S., AND LEE, J. 2010. Data-driven biped control.
ACM Transctions on Graphics 29, 4, Article 129.

LIU, L., YIN, K., VAN DE PANNE, M., SHAO, T., AND XU, W.
2010. Sampling-based contact-rich motion control. ACM Trans-
actions on Graphics 29, 4, Article 128.

MCCANN, J., AND POLLARD, N. 2007. Responsive characters
from motion fragments. ACM Transactions on Graphics 26, 3,
Article 6.

MIN, J., CHEN, Y., AND CHAI, J. 2009. Interactive generation of
human animation with deformable motion models. ACM Trans-
actions on Graphics 29, 1, Article 9.

MORDATCH, I., DE LASA, M., AND HERTZMANN, A. 2010. Ro-
bust physics-based locomotion using low-dimensional planning.
ACM Trans. Graph. 29, 4, Article 71.

MUICO, U., LEE, Y., POPOVIĆ, J., AND POPOVIĆ, Z. 2009.
Contact-aware nonlinear control of dynamic characters. ACM
Trans. Graph. 28, 3, Article 81.

MUICO, U., POPOVIĆ, J., AND POPOVIĆ, Z. 2011. Composite
control of physically simulated characters. ACM Trans. Graph.
30, 3, Article 16.

SAFONOVA, A., HODGINS, J. K., AND POLLARD, N. S.
2004. Synthesizing physically realistic human motion in low-
dimensional, behavior-specific spaces. ACM Transactions on
Graphics (TOG) 23, 3, 514–521.

SOK, K. W., KIM, M., AND LEE, J. 2007. Simulating biped
behaviors from human motion data. ACM Trans. Graph. 26, 3,
Article 107.

TREUILLE, A., LEE, Y., AND POPOVIĆ, Z. 2007. Near-optimal
character animation with continuous control. ACM Transactions
on Graphics (TOG) 26, 3, Article 7.

WANG, J. M., FLEET, D. J., AND HERTZMANN, A. 2009. Op-
timizing walking controllers. ACM Transctions on Graphics 28,
5, Article 168.

WEI, X., MIN, J., AND CHAI, J. 2011. Physically valid statisti-
cal models for human motion generation. ACM Transctions on
Graphics 30, 3, Article 19.

YE, Y., AND LIU, C. K. 2010. Optimal feedback control for
character animation using an abstract model. ACM Trans. Graph.
29, 4, Article 74.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. Simbicon:
Simple biped locomotion control. ACM Transctions on Graphics
26, 3, Article 105.

YIN, K., COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M.
2008. Continuation methods for adapting simulated skills. ACM
Transctions on Graphics 27, 3, Article 81.

ZHAO, P., AND VAN DE PANNE, M. 2005. User interfaces for
interactive control of physics-based 3D characters. In ACM
SIGGRAPH 2005 Symposium on Interactive 3D Graphics and
Games, 87–94.

