
29

Learning to Schedule Control Fragments for Physics-Based
Characters Using Deep Q-Learning

LIBIN LIU
Disney Research
and
JESSICA HODGINS
Disney Research and Carnegie Mellon University

Given a robust control system, physical simulation offers the potential for
interactive human characters that move in realistic and responsive ways.
In this article, we describe how to learn a scheduling scheme that reorders
short control fragments as necessary at runtime to create a control system
that can respond to disturbances and allows steering and other user inter-
actions. These schedulers provide robust control of a wide range of highly
dynamic behaviors, including walking on a ball, balancing on a bongo
board, skateboarding, running, push-recovery, and breakdancing. We show
that moderate-sized Q-networks can model the schedulers for these control
tasks effectively and that those schedulers can be efficiently learned by the
deep Q-learning algorithm.

CCS Concepts: � Computing methodologies → Physical simulation;
Control methods; Machine learning; Neural networks;

Additional Key Words and Phrases: Human simulation, motion control, deep
Q-learning

ACM Reference Format:

Libin Liu and Jessica Hodgins. 2017. Learning to schedule control fragments
for physics-based characters using deep Q-learning. ACM Trans. Graph. 36,
3, Article 29 (June 2017), 14 pages.
DOI: http://dx.doi.org/10.1145/3083723

1. INTRODUCTION

Given a robust control system, simulation offers the potential
for interactive human characters that respond naturally to the
actions of the user or changes in the environment. The difficulty in
capitalizing on this functionality has been in designing controllers
for a variety of behaviors that are responsive to user input and

Authors’ addresses: L. Liu, 4720 Forbes Avenue, Lower Level, Suite 110,
Pittsburgh, PA 15213; email: libin.liu@disneyresearch.com; J. Hodgins, the
bulk of the research was done at Disney Research, and she is currently
with Carnegie Mellon University, Robotics Institute, 5000 Forbes Avenue,
Pittsburgh, PA 15213; email: jkh@cs.cmu.edu.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions@acm.org.
c© 2017 ACM 0730-0301/2017/06-ART29 $15.00

DOI: http://dx.doi.org/10.1145/3083723

robust to disturbances. Tracking a reference motion is an effective
way to simplify the control design for complex human motions by
leveraging the natural style and strategies contained in the motion
data. However, tracking the motion sequence as it was recorded
provides limited robustness and restricts the behaviors that are
amenable to the approach.

A scheduler that reorders the tracking reference at runtime based
on the state of the simulation can produce a robust control sys-
tem. It not only synchronizes the reference with the simulation at
specific events such as ground contact but also orchestrates the
transitions among different control strategies, such as standing in
place and taking steps, to respond to perturbations and user in-
teractions. Handcrafted schedulers work well for locomotion [Lee
et al. 2010a] and control systems using control graphs [Liu et al.
2016], but designing them often requires specific insights into the
particular behaviors being controlled.

In this article, we develop a control system that takes advantage
of automatically learned schedulers to achieve robust interactive
control of a diverse set of behaviors. These schedulers arrange the
control at the scale of short segments, each typically 0.1 seconds
in length, called control fragments. We model a scheduler with a
medium-sized neural network, or Q-network, that maps a high-level
representation of the state of the simulation to the best control frag-
ment. We employ the deep Q-learning algorithm [Mnih et al. 2015]
to train the scheduler by repeatedly executing an offline simula-
tion. The learned scheduler performs in real time as a result of its
compact formulation, enabling fast simulation of the behaviors.

The control fragments can be obtained by segmenting an input
controller into small pieces for a behavior such as running or turning.
We find that preserving as much as possible the original sequence in
which the control fragments were arranged in the input controllers is
important to the quality of the resulting motions, because it contains
the control strategies that the human used to perform the motions.
Our learned schedulers select out-of-sequence control fragments
only when necessary.

This article makes three principal contributions: (1) We describe
a scheduling scheme that can be learned to realize robust interactive
control of a wide range of behaviors. The same mechanism can
be used to manage transitions among a set of control strategies,
allowing a successful response to larger perturbations and greater
user control through a broader set of available actions. (2) We
show that short control fragments allow schedulers to take actions
immediately in response to new user commands or disturbances
instead of waiting for predefined transition points. This quick re-
sponse increases the robustness over that found in the original mo-
tion controllers. It also allows new transitions to be found that are
not contained in the original controllers. (3) We adapt the deep Q-
learning algorithm to allow efficient learning of the schedulers. A
reward function that gives preference to the original sequence and an

ACM Transactions on Graphics, Vol. 36, No. 3, Article 29, Publication date: June 2017.

29:2 • L. Liu and J. Hodgins

exploration strategy that gives more weight to the in-sequence con-
trol fragments significantly improves the efficiency of the learning
and results in high-quality motions.

We demonstrate the power of this approach by controlling a
diverse set of motions, including both motions that are amenable
to a simple tracking approach such as running and turning as well
as those that are not such as breakdance stunts, recovering from
an unexpected push while standing, and motions on moving terrain
such as a large ball, a bongo board, and a skateboard.

2. RELATED WORK

Designing controllers to realize complex human behaviors on sim-
ulated characters has a long history in computer animation. Nu-
merous successful control systems have been proposed for a vari-
ety of behaviors, ranging from balancing [Macchietto et al. 2009;
Hämäläinen et al. 2015] and locomotion [Yin et al. 2007; Coros et al.
2010; Mordatch et al. 2010], to dynamic aerial behaviors [Zordan
et al. 2014; Ha and Liu 2014], breakdance [Al Borno et al. 2013]
and bicycle stunts [Tan et al. 2014]. We refer interested readers to
a survey article [Geijtenbeek and Pronost 2012] for an overview of
this topic.

Tracking a reference sequence is a promising way to facilitate
the control design and to simulate high-quality motions. A tracking
controller is typically constructed from a reference motion clip and
maintains a time-indexed target trajectory from which the control
signals are computed. Open-loop tracking controllers can be built
via trajectory optimization [Sok et al. 2007; Wampler and Popović
2009; Mordatch et al. 2012; Ha and Liu 2014] or sampling-based
methods [Liu et al. 2010, 2015]. They usually lack robustness
to unplanned disturbances because of the absence of feedback at
runtime.

Feedback policies that compensate for disturbances at runtime
can significantly improve the robustness of open-loop tracking con-
trollers [Yin et al. 2007; Wang et al. 2010; Lee et al. 2010a; Muico
et al. 2009], while longer-sighted control can be realized by simulat-
ing simplified models [Kwon and Hodgins 2010; Coros et al. 2010;
Ye and Liu 2010; Mordatch et al. 2010; Kwon and Hodgins 2017].
Although most of these methods are designed for locomotion, they
have also been applied to rotational and aerial behaviors [Zordan
et al. 2014; Al Borno et al. 2014].

Recently, Liu and his colleagues [2016] demonstrated a generic
method to learn robust tracking control for a variety of behaviors.
Key to their success is a novel guided policy search method that
efficiently learns time-varying linear feedback policies. Despite the
success of this method in controlling motions on flat terrain, we
find that it cannot achieve robust control in highly dynamic en-
vironments, such as the balance on a bongo board discussed in
this article. These failures occur because its fixed control sequence
cannot effectively handle drift due to disturbances from the envi-
ronment. Instead, our tests demonstrate that the ability to reorder
the control at runtime is essential to success with these tasks.

A fixed time-indexed reference-tracking scheme is brittle and of-
ten fails due to unplanned disturbances [Ye and Liu 2010; Lee et al.
2010a; Abe and Popovı́c 2011]. A controller that uses a state-related
index can deal with this issue. Switching the control strategies for
the stance phase and the swing phase at every foot contact is a basic
technique used by locomotion controllers [Nakanishi et al. 2004;
Lee et al. 2010a]. For bipedal walking control, a phasing variable
that is monotonic with respect to time is often employed to index the
2D or 3D gait control [Abe and Popovı́c 2011; Buss et al. 2014]. For
rotational behaviors, Zordan and his colleagues [2014] investigate
several angular quantities that can effectively index the control

Fig. 1. System overview.

policies. Our work also focuses on scheduling tracking control
according to the simulation state. Instead of using a behavior-
dependent index quantity, we build our scheduler on a high-level
representation of the simulation state, which can be effectively
used across behaviors.

Reinforcement Learning (RL) provides a convenient framework
for learning a control policy from past experience. In the context
of character animation, value-based approaches have been success-
fully used in control systems with finite action sets [McCann and
Pollard 2007; Treuille et al. 2007; Lee et al. 2010b; Coros et al.
2009]. Learning with a continuous action space is more difficult
and often requires special treatment [Peng et al. 2015], where policy
search methods play an important role in many approaches [Levine
and Koltun 2013; Tan et al. 2014; Mordatch et al. 2015]. Recently,
Mnih and his colleagues [2015] showed that a Deep Q-Network
(DQN) can be effectively trained to perform at the same level as
a human player across a number of classical video games. Their
success stimulated research on applying DQN to various control
problems [Lillicrap et al. 2015; van Hasselt et al. 2015; Nair et al.
2015; Peng et al. 2016]. Our scheduling problem has a continuous
state space and a finite action set consisting of control fragments.
This configuration allows us to utilize the deep Q-learning algorithm
of Mnih et al. [2015] to learn the schedulers.

Learning can be performed on various building blocks. Interactive
kinematic motion controllers have been learned on motion clips
[Treuille et al. 2007], motion fragments [McCann and Pollard 2007],
or motion fields [Lee et al. 2010b]. In the context of robotics and
physics-based character animation, learning can be done at the scale
of every timestep [Liu et al. 2013], while motion primitives that
accomplish a complete task such as grasping an object or walking
one step [Stulp et al. 2012; Coros et al. 2009; Peng et al. 2015]
are widely used as the building block. In this article, we evenly
segment a tracking controller into short control fragments using a
fixed time interval independent of the behavior being controlled.
These control fragments can be viewed as motion primitives. Since
they are of uniform length rather than being segmented at contact
or behavior changes, the domain knowledge in the motion primitive
is reduced.

3. SYSTEM OVERVIEW

Our goal is to realize robust control of a diverse set of behaviors
while allowing the user to interact with the simulated character. To
achieve this goal, our control system learns an individual sched-
uler for each task that periodically reschedules the control frag-
ments according to the state of the simulation. Figure 1 provides

ACM Transactions on Graphics, Vol. 36, No. 3, Article 29, Publication date: June 2017.

Learning to Schedule Control Fragments for Physics-Based Characters Using Deep Q-Learning • 29:3

an overview of the major components of our system, where the
simulation pipeline is shown with blue arrows, and the additional
procedures for the offline learning process are drawn in red.

The input to our system is control fragments for the target be-
haviors and a reward function that provides a high-level description
of the task. These control fragments are created in a preprocessing
stage by segmenting a precomputed tracking controller into a series
of short pieces, each 0.1s in length. The input tracking controllers
are typically constructed from a motion clip and each controls a
complete movement such as a running cycle. These control frag-
ments collectively compose an action set A = {Aa}, where every
action a corresponds to a control fragment Aa . A scheduler main-
tains a medium-sized artificial neural network, or a Q-network, that
computes the long-term reward of taking an action at a state. The
simulation pipeline starts from the evaluation of the Q-network ac-
cording to the current simulation state and the task parameters. The
control fragment having the highest long-term reward is selected
and computes the control signals to actuate the character in the fol-
lowing 0.1s. When this control fragment finishes, another control
fragment is scheduled according to the new state.

Our system utilizes the deep Q-learning algorithm [Mnih et al.
2015] to train the Q-networks offline. Starting from a randomly
initialized Q-network, the learning process repeatedly executes the
simulation pipeline and collects simulation experiences to evolve
the Q-network toward a better approximation. Unlike an online
simulation where the scheduler always takes the best action, an ex-
ploration strategy is used in the learning process that selects nonop-
timal control fragments probabilistically to explore the state-action
space. Once the selected control fragment finishes, the simulation
is evaluated by the reward function, and the Q-network is updated
accordingly.

4. LEARNING OF SCHEDULERS

We formulate our scheduling problem as a Markov Decision Process
(MDP) represented by a tuple (X, A, T , R, γ), which consists of a
state space, X, an action set, A, a transition function, T , a reward
function, R, and a discount factor, γ . Our problem has a hybrid
state space, where a state x = (s, u, ã) ∈ X models the continuous
simulation state s ∈ S, the optional task parameter u ∈ U , and the
index of the previous action ã ∈ A. Taking an action a ∈ A at state
x leads to a state transition, T : (x, a) �→ x ′,

T :

⎛
⎝

⎡
⎣ s

u
ã

⎤
⎦ , a

⎞
⎠ �→

⎡
⎣ s ′

u′

ã′

⎤
⎦ =

⎡
⎣ Aa(s)

u
a

⎤
⎦ , (1)

where s ′ = Aa(s) represents the simulation under the control of
the control fragment Aa . The reward function r = R(x, a, x ′) eval-
uates this state transition and determines how it fulfills a given
task. A control policy, or in our case, a scheduler, π : X → A,
defines a mapping from the state space to the action set. Starting
from a state x, repeatedly executing a control policy π leads to
a transition sequence {x0 = x, a0, r0, x1, a1, r1, . . . } that satisfies
at = π (xt), xt+1 = T (xt , at), and rt = R(xt , at , xt+1). Then the
evaluation of π at state x is given by a discounted accumulative
reward V π (x) = ∑∞

t=0 γ t rt over the transition sequence. The dis-
count factor γ implicitly determines the planning horizon. We use
γ = 0.95 for all of the results presented here.

Solving a MDP problem means figuring out the optimal con-
trol policy having the maximal accumulative reward at all possible
states. Q-learning [Watkins 1989] is a class of model-free methods
that solve an MDP problem by evolving a Q-value function de-
fined as Qπ (x, a) = r + γV π (x ′). The optimal Q-value function

recursively satisfies the Bellman equation:

Q∗(x, a) = r + γ max
a′ Q∗(x ′, a′). (2)

Once it is found, the optimal policy π∗ can be simply derived as

π∗ : x �→ arg max
a

Q∗(x, a). (3)

The hybrid state space in our problem necessitates the use of
a parameterized Q-value function Q(x, a; θ), where θ represents
the parameters. Our system employs an artificial neural network
to approximate this function and train it using the deep Q-learning
algorithm [Mnih et al. 2015]. For simplicity, we call this neural
network a Q-network hereafter.

4.1 States

We model our simulated character as an underactuated articulated
rigid body system with an unactuated root joint mounted on the
character’s pelvis. We use a combination of two sets of selected
properties, s = sm ∪ se, to represent the state of the simulation,
where sm models the character’s movement and se captures the
state of the objects in the environment that interact with the char-
acter. All of these properties are measured in reference coordinates
that move horizontally with the character and have an axis aligned
with the character’s facing direction. While there are many can-
didate properties, we follow the choice of Liu et al. [2016] that
sets sm = (q0, h0, c, ċ, d l , dr , L). This 18-dimensional vector con-
tains the orientation q0 and height h0 of the root joint, the centroid
position c and velocity ċ, the vectors pointing from the Center of
Mass (CoM) to the centers of left foot d l and right foot dr , and
the angular momentum L. The environmental state se is defined
for each behavior. For example, to achieve a stable oscillation on a
bongo board, our control system observes the relative position of
the bongo board’s wheel with respect to the character’s CoM and
the velocity of the wheel. An empty environmental state se = ∅ is
used for the behaviors that do not interact with a moving object,
such as running and breakdancing. We defer detailed definitions of
se for each behavior until Section 5.

The task parameter u ∈ U consists of the parameters that a user
can interactively control at runtime. For example, when controlling
the direction in which the character runs or skateboards, we choose
the angle between the current direction and the target direction
as the task parameter. If a task does not have a controllable parame-
ter, such as balancing on a bongo board, we choose U = ∅. We will
discuss the separate definitions of these task parameters in Section 5.

A state vector x = (s, u, ã) in our MDP problem includes both the
simulation state, s, and the task parameter, u. It additionally records
the index of the previous action, ã, for identifying an in-sequence
action as discussed in the next section. The scheduler only takes
s and u into consideration when selecting the next action, where
each dimension of the simulation state s is centralized and scaled
according to the mean and standard variance of the reference motion
clips from which the input tracking controllers are constructed, and
the task parameter u is normalized according to the range of its
possible values.

4.2 Actions

The action set A consists of a number of control fragments, which
can be extracted from precomputed tracking controllers. A tracking
controller typically maintains a time-indexed reference trajectory
and computes control signals from it. By cutting the reference tra-
jectory into small pieces, our control system creates a series of short
fragments of the original tracking control, which we call control

ACM Transactions on Graphics, Vol. 36, No. 3, Article 29, Publication date: June 2017.

29:4 • L. Liu and J. Hodgins

fragments. If the original tracking controller has associated feed-
back policies, we also embed them into the corresponding control
fragments. Every scheduler in our system takes a collection of these
control fragments obtained from one or more input controllers as
the action set. Each time a scheduler selects a control fragment, the
control system is set to the reference time corresponding to that
control fragment.

Our control system segments a tracking controller with an inter-
val, δt , predefined according to the length of its reference trajectory.
Although the exact value of δt is not critical, if it is too long, the
scheduler will become unresponsive to changes. If it is too short,
the large number of actions will increase the complexity in learning
the scheduler. Inspired by Liu et al. [2016], we choose δt = 0.1s.

Executing a control fragment means applying its associated feed-
back policy, computing the control signals, and advancing the sim-
ulation by δt seconds. We represent this process as

s ′ = A(s), (4)

where A represents the control fragment being executed, while s
and s ′ are the simulation states before and after the execution, re-
spectively. At runtime, the scheduler selects a new control fragment
according to s ′ after A finishes.

The segmentation of the input tracking controllers suggests a ref-
erence sequence O = {〈ã, a〉}, where an action pair 〈ã, a〉 indicates
that control fragment Aã is followed by Aa in an input tracking con-
troller. Hereafter, we refer to an action a as an in-sequence action
of action ã if 〈ã, a〉 ∈ O; and otherwise, it is an out-of-sequence
action.

4.3 Reward Function

A reward function R : X × A × X → R specifies the task that
the scheduler is designed to accomplish. In this article, the reward
function is a summation of four penalty terms:

R(x, a, x ′) = Etracking + Epreference + Efeedback + Etask + R0, (5)

where R0 is a default reward returned when all of the requirements
of the task are satisfied; otherwise the penalties are applied, and the
final reward is less than R0. We use R0 = 5 for all our results.

Tracking: Our system trains a scheduler to follow the reference
sequence O in order to produce high-quality motions. The tracking
penalty term Etracking of the reward function thus penalizes any out-
of-sequence action by

Etracking(x, a, x ′) =
{

0 〈ã, a〉 ∈ O or ã /∈ Õ
−do otherwise,

(6)

where do > 0 is a constant penalty, Õ = {ã : ∃a, 〈ã, a〉 ∈ O}. This
term gives strong preference to the reference sequence while still
allowing out-of-sequence actions when necessary. We use do = 2.0
for all our results.

Action Preference: The term Epreference reflects the user’s prefer-
ence when a task can be accomplished by multiple actions. Let AI

represent the subset of favored actions in A; we define

Epreference =
{

0 a ∈ AI

−dp otherwise, (7)

where dp > 0 is a constant penalty. We use dp = 0.2 unless specified
otherwise.

Feedback: The feedback term Efeedback penalizes excessive feed-
back when the control fragments have associated feedback policies.
Excessive feedback happens either because a failure has occurred
that the feedback policy cannot handle or because an improper

Fig. 2. Q-Network: The input layer is a state vector that models the simula-
tion state s and the task parameter u; the output layer computes the Q-values
of all actions taken at the input state; two hidden layers consist of Rectified
Linear Units (ReLUs) whose activation function is f = max(0, z), where z

is the input to the unit. All the layers are fully connected.

control fragment has been selected. In either case the controller
produces poor-quality results.

Task: The task term Etask models task-dependent penalties, such
as a penalty applied when the character fails to move in a target
direction. We will describe individual tasks and the corresponding
task terms in Section 5.

4.4 Q-Network

We use a feedforward artificial neural network to approximate the
Q-value function, Q(x, a; θ), defined in Equation (2). Instead of
computing the Q-value for one state-action pair (x, a) at a time,
the limited number of actions allows us to compute Q-values for
all of them simultaneously with a compact network structure, as in
Figure 2. The input layer of this Q-network is a vector that consists
of the simulation state, s, and the task parameter, u. The output
layer is a vector of dimension |A|, that is, the number of control
fragments, whose a-th component corresponds to the Q-value of
action a taken at state x. With this representation, the true Q-value
function can be written with index notation as

Q(x, a; θ) = [Q̃(x; θ)]a. (8)

This structure is inspired by the work of Mnih and his colleagues
[2015]. Unlike the deep networks that they found were required for
learning video game strategies from images, we find that relatively
shallow networks can successfully model the schedulers for the
tasks tested in this article. Each of our Q-networks has two fully
connected hidden layers, and every hidden layer consists of 300
ReLUs whose activation function, f , is defined as

f (z) = max(0, z), (9)

where z is the scalar input to a unit. The network parameter θ thus
contains the weights and bias terms of both hidden layers and the
output layer.

ACM Transactions on Graphics, Vol. 36, No. 3, Article 29, Publication date: June 2017.

Learning to Schedule Control Fragments for Physics-Based Characters Using Deep Q-Learning • 29:5

ALGORITHM 1: Learning of Q-network

1: initialize D ← ∅
2: initialize a Q-network with random parameters θ

3: backup current parameters θ̂ = θ
4: loop
5: choose a starting state x0 = (s0, u0, ã0)
6: t ← 0
7: while xt /∈ Xfail and t < Tepisode do
8: select an action at according to xt = (st , ut , ãt):
9: with probability εr select a random action

10: with probability εo select at s.t. 〈ãt , at 〉 ∈ O
11: otherwise select at = argmaxa Q(xt , a, θ)
12: xt+1 ← T (xt , at); rt ← R(xt , at , xt+1)
13: store transition tuple (xt , at , rt , xt+1) in D
14: update θ with batch stochastic gradient descent
15: every Nbackup steps backup θ to θ̂
16: t ← t + 1
17: end while
18: end loop

4.5 Deep Q-Learning

Our control system learns separate schedulers for each task. Each
scheduler consists of a Q-network with different numbers of input
and output units. The learning algorithm iteratively updates the
network parameters θ via small steps that minimize a loss function

L(θ) = Ex,a,x′ [||y(x, a, x ′; θ̂) − Q(x, a; θ)||2] + wr ||θ ||2, (10)

where the regularization term is weighted by wr = 0.001. Unlike
an ordinary regression problem, the target function

y(x, a, x ′; θ̂) =
{

r + γ maxa′ Q(x ′, a′; θ̂) x ′ /∈ Xfail

0 x ′ ∈ Xfail
(11)

changes when the current parameters θ̂ are updated. The terminal
set Xfail contains the states in which the control will inevitably fail,
for example, the character is falling.

The learning algorithm updates the network parameters θ after ev-
ery transition step using a batch stochastic gradient descent method.
The loss function of Equation (10) is evaluated over a minibatch
consisting of Nbatch = 50 transition tuples randomly selected from
a sample set D = {(xi, ai, ri , x

′
i)}, which stores up to ND = 106

most recent transition tuples. The update rule can be written as

θ = θ − α
L′

θ

L0
, (12)

where α is the learning rate and L′
θ is the derivative of the loss func-

tion with respect to θ , which can be efficiently computed through
backpropagation. A variation of the RMSprop algorithm [Tieleman
and Hinton 2012] is used to scale the gradients as suggested by
Mnih et al. [2015]. The scale factor is computed as

L0 =
√

MA[L′
θ

2] − (MA[L′
θ])2 + δ0, (13)

where MA[z] = (1.0 − β) MA[z] + βz is the moving average of a
quantity z with decay factor β, and δ0 is a small constant for avoiding
division by zero. We use β = 0.05 and δ0 = 0.01 for Equation (13).
We use a learning rate α = 2.5 × 10−5 at the beginning of the
learning process and halve it every two million steps.

Instead of updating the target function of Equation (11) with θ
in every learning step, Mnih and his colleagues [2015] suggest that
keeping θ̂ unchanged for a fixed Nbackup steps reduces the variation

of the target function and improves the stability of the learning
algorithm. We adopt this idea and use Nbackup = 5,000 in all our
experiments.

Algorithm 1 outlines the major steps of the learning process.
Starting from a randomly initialized Q-network, the outer loop of
the algorithm repeatedly generates episodes of simulation and up-
dates the parameters until a successful scheduler is found. Each
simulation episode begins with a chosen starting state x0. The inner
loop of the algorithm iteratively elongates the episode by select-
ing an action at according to the current state xt , executing the
corresponding control fragment Aat

to advance the state to xt+1,
computing the immediate reward rt and storing the transition tuple
(xt , at , rt , xt+1) in the sample set D, and updating the parameters θ
with the batch stochastic gradient decent algorithm described pre-
viously. The simulation episode ends when either the state xt is in
the terminal region Xfail or the maximal length of Tepisode = 150
transition steps is reached.

We create the starting state x0 = (s0, u0, ã0) for the first episode
by randomly picking a simulation state s0 from those collected
during the construction of the input tracking controllers, setting the
associated action ã0 to be consistent with s0, and, if applicable,
assigning a random task parameter u0. If an episode ends in the
terminal region, we roll back 20 transition steps and start a new
episode from that simulation state with a new task parameter u0. If
the episode fails too soon or ends without failing, the new starting
state is chosen in the same way as the first episode.

The action at is chosen in a ε-greedy fashion: with probability
εr , the random exploration strategy is applied and a random action
is selected; with probability εo, the tracking exploration strategy is
applied and an in-sequence action at that satisfies 〈ãt , at 〉 ∈ O is
selected; otherwise, the action at = argmaxa Q(xt , a, θ) is selected,
which exploits the current scheduler. In all of our experiments, the
probability εr is fixed to 0.1, while εo is linearly annealed from 0.9
to 0.1 in the first NA = |A|×10k steps and is fixed at 0.1 thereafter.
We find that the tracking exploration strategy significantly acceler-
ates the learning process, as indicated in Figure 3. The blue curves
in Figure 3 correspond to the learning processes using our explo-
ration strategy, while the green curves show the learning processes
using the same configurations except that the tracking exploration
is disabled by setting εo = 0. With the latter settings, the learning
processes can easily get stuck in local optima, and the learned sched-
ulers often select unnecessary out-of-sequence actions, resulting in
jerky movements.

When performing a control fragment Aa , the learning algorithm
applies noise torques τε ∼ N (0, σ 2

τ) to every Degree of Free-
dom (DoF) of the character’s legs and waist, where the noise level
στ = 5Nm. This procedure forces the learning algorithm to visit dif-
ferent states under the same action sequence and allows the learned
scheduler to deal with larger uncertainty as suggested by Wang et al.
[2010] and Liu et al. [2016]. The computation cost prohibits a com-
plete cross validation on the hyperparameters described previously.
Instead, we choose these parameters empirically on the task of bal-
ancing on a bongo board and use the same values for all other tasks.

5. RESULTS

We tested our system using the character model shown in
Figure 4(a), which is 1.7m tall and weighs 61kg. It has 51 DoF
in total, including a 6-DoF unactuated root. Most of our results are
tested using the control fragments that compute joint-level control
signals using PD-servos. We use PD-gains kp = 500, kd = 50 for
all of the joints except for the nearly passive toes and wrists, for
which we use kp = 10, kd = 1.

ACM Transactions on Graphics, Vol. 36, No. 3, Article 29, Publication date: June 2017.

29:6 • L. Liu and J. Hodgins

Fig. 3. Learning curves of (a) the bongo board balancing task, (b) the skateboarding task, and (c) the running task, using feedback-augmented control
fragments. The filled areas represent the average Q-values V θ = Ex,a [Q(x, a; θ)] computed upon the minibatches used in every learning step. The solid curves
represent the moving average MA[V θ] = (1 − β) MA[V θ] + βV θ with decay factor β = 0.01. The learning processes shown in blue use our exploration
strategy, while those drawn in green have the tracking exploration disabled.

Fig. 4. Models used in this article.

We have implemented our system in C++. We augment the Open
Dynamic Engine (ODE) with an implicit damping scheme [Tan
et al. 2011] as described in Liu et al. [2013] to simulate the char-
acter, enabling the use of a simulation timestep of 0.01s. This large
timestep significantly speeds up the learning process and allows
real-time performance. The learned Q-networks are executed by
an implementation based on the Eigen library [Guennebaud et al.
2010]. The simulation pipeline runs at 30× real time on a desktop
with an Intel Core i7-3770 @ 3.4GHz CPU.

The training routine is implemented in Python 2.7 based on the
Theano library [Bastien et al. 2012; Bergstra et al. 2010], which pro-
vides an off-the-shelf mechanism to compute gradients and update
parameters. The training is performed on the same CPU and usu-
ally requires several hours of computation. We check the learned
scheduler every one million iterations and stop the learning pro-
cess if a successful scheduler is found. Table I provides detailed
performance statistics for all of the tested tasks.

5.1 Scheduling of Open-Loop Fragments

We start our experiments by learning schedulers for open-loop
control fragments. Because of the absence of feedback, this type
of tracking controller can only produce a single motion from a

designated starting state. We will show that our system can achieve
robust control of several difficult behaviors by scheduling those
open-loop control fragments.

We prepare the input open-loop tracking controllers with the
SAMCON algorithm [Liu et al. 2010, 2016], which is a sampling-
based method that constructs controllers from reference motion
capture clips. The output of SAMCON is a target trajectory that
can be tracked with PD-servos to reproduce the input motion clip.
After the segmentation process, each control fragment contains a
short piece of the target trajectory, producing a short clip of the
target behavior. Because these control fragments have no associated
feedback policies, we use Efeedback = 0 for all of them.

5.1.1 Balancing on a Bongo Board. In this task, the character
tries to maintain balance on the bongo board shown in Figure 4(b),
which consists of a board 80cm in length, a wheel 12cm in diameter,
and a track mounted under the board constraining the wheel to move
along it. The total weight of this bongo board is 3.2kg.

Stable contacts are very important to the success of this task;
however, we find that our character’s rigid feet do not remain on
the board. The same problem has been investigated by Jain and Liu
[2011], who suggested the use of soft deformable feet to mitigate
the problem, at the cost of increased simulation time. Instead, we
attach the inner side of both feet to the board with a pin joint.

The environmental state se = {vwheel, dwheel} for the bongo board
balancing task models the velocity of the wheel, vwheel, and the
relative position between the wheel and the character’s CoM, dwheel.
We do not include user control in this task and set U = ∅. The
task term of the reward function penalizes the horizontal deviation
between the character’s CoM and the wheel using

Etask = −f (||d∗
wheel|| − 0.1), (14)

where the function f is the rectifier defined in Equation (9), and
d∗

wheel represents the horizontal components of dwheel.
Our system constructs an open-loop tracking controller from a

reference motion capture clip where the actor oscillates on the board.
After segmentation, the action set contains 11 open-loop control
fragments that collectively reproduce one cycle of the reference
oscillation. The learned scheduler allows the character to maintain
balance on the board without external perturbations.

Figure 5(a) provides an analysis of how the learned scheduler
works, where each data point (i, j) corresponds to an action pair
〈ai, aj 〉 indicating that the action aj on the vertical axis is taken after

ACM Transactions on Graphics, Vol. 36, No. 3, Article 29, Publication date: June 2017.

Learning to Schedule Control Fragments for Physics-Based Characters Using Deep Q-Learning • 29:7

Table I. Performance Statistics
dim[X] # Steps tlearning

Task dim[S] U |A| (×106) (hour) MA[V θ]
bongo board balancing (*) 24 ∅ 11 2 4.0 67.0
walking on a ball (*) 24 {φ} 22 3 4.7 41.4
walking on a ball using raw states of rigid bodies (*) 126 {φ} 22 3 5.2 47.5
bongo board balancing 24 ∅ 11 2 3.9 87.3
bongo board balancing using raw states of rigid bodies 126 ∅ 11 2 4.3 90.8
bongo board balancing w/push 24 ∅ 51 4 7.7 83.5
skateboarding 24 {φ} 39 4 8.3 63.8
skateboarding – tic-tac 24 {φ} 39 4 8.2 54.7
running 18 {φ} 50 3 4.2 73.0
push-recovery 18 ∅ 117 4 7.1 88.3
breakdancing 18 {A0, A1} 146 5 8.8 54.3
breakdancing w/sitting up 18 {A0, A1} 36 3 4.7 77.5
push-recovery w/balancing control 18 ∅ 109 4 8.3 84.8

Tasks marked with (*) are learned on open-loop control fragments. dim[S] represents the total DoF of both the movement state sm and environmental state se . U represents
the user control parameters. dim[U] = 0 if U is empty or otherwise 1. |A| represents the number of actions. # steps and tlearning are the total number of learning steps and the
learning time, respectively. MA[V θ] is the average Q-value when the learning process ends.

Fig. 5. Frequency of taking an action after another action for a bongo board
scheduler. The radius of a data point is proportional to the frequency with
which the action on the Y axis follows the action on the X axis. The diagonal
represents the in-sequence action pairs. Left: A scheduler learned on open-
loop control fragments. Right: A scheduler learned on feedback-augmented
control fragments.

the action ai on the horizontal axis. The radii of these data points
are proportional to the frequencies with which the action pairs are
taken. With the actions indexed such that the diagonal of the graph
represents the in-sequence action pairs, Figure 5(a) indicates that
the learned scheduler frequently takes out-of-sequence actions in
this task, thus violating the cycle embedded in the reference order.
Although the character can stay on the board without falling, it
cannot reproduce the reference oscillation.

5.1.2 Walking on a Ball. In this task, we let the character walk
on a ball and move in a user-specified direction. The ball is 0.7m
in diameter and weighs 18kg. We use se = {vball, dball} as the
environmental state, which captures the velocity of the ball, vball,
and the vector pointing from the character’s CoM to the center of
the ball, dball. The task parameter U = {φ} is the angle between the
current direction of motion and the target direction. We define the
task term Etask of the reward function as

Etask = ECoM + Edirection, (15)

where the balance term ECoM = −||d∗
ball|| keeps the character’s

CoM above the ball with d∗
ball representing the horizontal compo-

nents of dball, and the direction term Edirection controls the direction

of motion by

Edirection = −f (εc − ||ċ∗||) − f (δφ − εφ). (16)

The first penalty term of Equation (16) takes effect when the char-
acter moves slower than εc = 0.1m/s, where ċ∗ represents the
horizontal components of the character’s centroid velocity ċ. The
second term of Equation (16) penalizes the directional error if it
exceeds a threshold εφ = 5◦.

The input open-loop tracking controller is constructed from a
short motion capture clip in which the actor walks a few steps on
a ball and moves forward by rolling the ball underneath its feet.
The action set contains 22 open-loop control fragments. Although
there are no reference clips for turns, the learned scheduler allows
the character to stably walk on the ball and slowly turn to a user-
controlled direction.

To further evaluate the generality of the learning algorithm, we
learn a new scheduler to allow the character to walk on a big ball of
2.0m in diameter and 42kg as shown in Figure 6(g). The open-loop
control fragments learned on the 0.7m ball are reused in this task.
Without any other modification, the learning process automatically
finds a successful scheduler using these control fragments, even
though the environment has dramatically changed.

5.2 Scheduling of Feedback-Augmented Fragments

As shown in the last section, when the scheduler is learned using
open-loop fragments, the lack of feedback necessitates the frequent
use of out-of-sequence actions. This issue often leads to poor-quality
motions on cyclic behaviors such as running, because the scheduler
has to repeatedly break the motion cycles. Liu et al. [2016] sug-
gests that every open-loop control fragment can be enhanced with
an associated linear feedback policy. Such a feedback-augmented
control fragment can stabilize the simulation within the vicinity
of the reference motion, so long as the starting state falls into the
basin of attraction of the associated feedback policy. We will show
that a high-quality scheduler can be learned using these feedback-
augmented control fragments.

When a control fragmentAa is performed, its associated feedback
policy computes a corrective offset, a , according to the current
simulation state. a contains the additional rotations on several
selected joints, including the hips, the knees, and the waist. It will
be applied to every frame of the target trajectory of the control

ACM Transactions on Graphics, Vol. 36, No. 3, Article 29, Publication date: June 2017.

29:8 • L. Liu and J. Hodgins

Fig. 6. Real-time simulation of the learned schedulers. (a) A character walks on a ball. (b) A character balances on a bongo board and touches the board with
the ground to regain balance after a push. (c) A skateboarder pushes off the ground, rolls on the board, and turns to the right. (d) A runner trips over a bump and
recovers. (e) A character steps back to regain balance after a push. (f) A breakdancer performs a backflip. (g) A character walks on a big ball. (h) A character
balances on a bongo board with a heavy object on her left arm.

fragment. The feedback term Efeedback is thus defined as

Efeedback = −f (||a|| − εF) (17)

for these control fragments, where εF is a constant threshold that
indicates a normal range of feedback. We use εF = 0.2 radians for
all the results in the following.

To further facilitate the learning process, we let the random ex-
ploration strategy only choose a control fragment whose feedback
is less than a threshold max. During the tracking exploration proce-
dure and the exploitation procedure, if the selected control fragment
asks for a corrective offset exceeding max, we assume that the con-
trol has failed and consider the current state as a terminal state. We
use max = 1.5 radians unless specified otherwise.

5.2.1 Balancing on a Bongo Board with Feedback-Augmented
Fragments. We let our control system learn a new scheduler us-
ing the feedback-augmented control fragments derived from the
open-loop fragments used in the last section. The feedback policies
associated with those control fragments cannot accomplish the bal-
ancing task without rescheduling, and the character falls off of the

board in 5s. The failure occurs because the single-wheel support
is unstable in nature and the simulation can easily drift out of the
basin of attraction of the next control fragment if the schedule is
determined solely from the reference timing. In contrast, the learned
scheduler can achieve a stable oscillation by automatically selecting
the appropriate control fragment according to the current state.

We performed the same experiments as discussed in the last
section on the new scheduler. The result is shown in Figure 5(b).
Unlike the scheduler learned on the open-loop control fragments
(Figure 5(a)), Figure 5(b) indicates that the reference timing drives
the new scheduler most of the time, but a small number of out-
of-sequence action pairs appear occasionally and are important to
the success of the control. Most of these out-of-sequence pairs
occur around Action 3 and Action 8, both of which are taken near
the highest points of the oscillation. This result indicates that the
freedom to choose appropriate out-of-sequence actions is critical to
the success of this controller, while the feedback policies help the
action pairs stay in the reference sequence, improving the motion
quality. We encourage readers to watch the supplemental video for
better comparison.

ACM Transactions on Graphics, Vol. 36, No. 3, Article 29, Publication date: June 2017.

Learning to Schedule Control Fragments for Physics-Based Characters Using Deep Q-Learning • 29:9

Fig. 7. Action sequences for the bongo board task with a heavy object on
the character’s left arm. Top: The scheduler learned on the normal character
is used. Bottom: The scheduler is learned for this new task.

The scheduler learned earlier can maintain a stable oscillation on
the board, but moderate sideways pushes will cause the character to
fall over. To handle these perturbations, we additionally include an
auxiliary motion where the character regains balance by touching
the board on the ground and then resumes the balancing task.
We find that the method of Liu et al. [2016] cannot be directly
applied here because there is not a predefined transition between
the auxiliary motion and the oscillation. To solve this problem,
we enhance the original method and allow out-of-sequence
control fragments to be taken with the probability 0.1 during the
construction process. The final action set includes both the new
control fragments and their mirror actions, which makes the total
number of actions 51. We give strong preference to the oscillation
by setting dp = 2.0 in the preference term of Equation (7). The
learning process automatically discovers the necessary transitions,
which allows the character to land the board to regain balance
when necessary and return to a stable oscillation.

We further test the learning process on a character with different
mass distribution by attaching a heavy box of 10kg on the charac-
ter’s left arm (Figure 6(h)). This box is considered to be a part of the
character when computing the features of the simulation such as the
center of mass and the angular momentum. Without any modifica-
tion, the control fragments and the scheduler learned for the normal
character automatically allow this new character to balance on the
bongo board several seconds before falling off the board, although
out-of-sequence actions are frequently taken, and the character can-
not maintain a stable oscillation. We then learn a new scheduler
using the existing control fragments. As shown in Figure 7, this
new scheduler consistently skips a few actions and executes the rest
of the actions in sequence. The character thus maintains a more
stable oscillation on the board at a higher frequency.

5.2.2 Skateboarding. We use the skateboard model shown in
Figure 4(c), which is 0.8m long and weighs 2.8kg in total. It has
four wheels of 5.6cm in diameter. A damping torque proportional
to the rotational speed, τ = −0.001ω, is applied to each wheel.
This torque slows down the skateboard so that the character has to
push on the ground to keep moving forward. Similar to the bongo
board balancing task, the inner-front end of the right foot is fixed
on the board with a ball joint, which stabilizes the contacts while
still allowing the foot to rotate. A side effect of this treatment is that

the skateboard may be lifted unrealistically. To mitigate this prob-
lem, we augment the original construction process of the control
fragments [Liu et al. 2016] with an extra cost term that penalizes
any board lifting or tilting. This term effectively forces the control
fragments to keep the skateboard on the ground. The environmental
state se = {dL, θL, dR, θR} is a six-dimensional vector containing
the horizontal distance between the board and both of the character’s
feet, and their relative orientation around the vertical axis. The total
DoF of the simulation state s is thus 24. The goal of the skateboard-
ing task is to achieve interactive navigation on flat terrain. The user-
controlled task parameter U = {φ} is the same as the one used in the
walking-on-a-ball task. The task term Etask of the reward function is
the direction cost of Equation (16) with εc = 2.0m/s and εφ = 10◦.

Our control system learns the scheduler with an action set consist-
ing of 39 control fragments. These control fragments are built from
four reference motions, including pushing off the ground, rolling
on the board, and two kick turns to the left and the right, respec-
tively. The reference sequence O alternates pushing and the other
movements. The action preference term Epreference favors rolling on
the board, which makes the character stay on the board as long as
possible and push off the ground to accelerate if the board slows
down too much. When the target direction changes, the turns are au-
tomatically activated when the character skateboards stably enough
and executed repeatedly until the target direction is reached. Al-
though the scheduler is learned on a flat terrain, it survives on a
rough terrain with bumps of 2cm in height placed perpendicular to
the skateboarding direction.

To show the effect of the preference term of the reward function,
we test a second reward function where the subset of favored actions
AI includes the two kick turns instead of the rolling movement. A
stronger preference parameter dp = 2.0 is used for Epreference in this
experiment. The learning process finds a scheduler that alternates
the two kick turns to accelerate, thus creating a tic-tac movement.

5.2.3 Running. The running task has the same goal as the skate-
boarding task and reuses the task parameter and the task reward term
defined previously. Three running controllers are used for this task,
including a forward run, a smooth right turn, and a 90◦ right turn.
The mirrors of these turning controllers are also included to pro-
duce left turns. The reference sequence O randomly concatenated
the forward run and the turns while keeping the foot contacts con-
sistent. A total of 50 control fragments are included in the action set,
among which the forward run is favored by the action preference
term Eperference of the reward function.

The scheduler learned by the proposed method automatically
selects either the 90◦ turn or the smooth turn according to the
difference between the current running direction and the target di-
rection. Unlike the bongo boarding task and the skateboarding task,
the learned scheduler for the running task follows the reference
sequence O most of the time. In this sense, it behaves like a graph-
based planner. To fully test the capability of the learned scheduler,
we let the character (a) trip over a small bump on the ground and (b)
run a few steps on a small patch of icy ground where the coefficient
of friction is 0.1. In both situations, following the reference sequence
leads to falling, but the learned scheduler can select out-of-sequence
actions to prevent falling without any further adaptation, as shown
in Figure 8. Furthermore, our control system can learn a new sched-
uler for the slippery terrain using the same set of control fragments.
In this case, the character frequently uses out-of-sequence actions
to maintain balance and slowly turns to the target direction.

5.2.4 Push-Recovery. In this task, we apply horizontal pushes
to the character’s trunk. The character responds by taking steps to

ACM Transactions on Graphics, Vol. 36, No. 3, Article 29, Publication date: June 2017.

29:10 • L. Liu and J. Hodgins

Fig. 8. Action sequences for the running task. Top: The character trips
over a small bump. Bottom: The character runs a few steps on a patch of icy
ground. The blue curves show the actions in the reference sequence. The
red curves are the control fragments that are executed to the disturbances
caused by the environment.

regain balance. Eight response movements are used for this task,
each of which starts after a push from one of the eight directions
and ends with the same standing pose after taking one or two
steps. The reference sequence O contains only the transitions
from these response movements to the in-place standing. There
is no prior knowledge of which movement should be used to
respond to a push. The scheduler is learned with an action set
of 117 control fragments. The preference term Epreference favors
the standing actions, and the task term Etask is set to zero for this
task. During the learning process, a random horizontal push of
[100 N, 300 N] × 0.2s is applied on the character’s trunk every 2s.
The transition tuples obtained during these pushes are discarded.
Using the learned scheduler, the character maintains in-place
standing after moderate pushes of up to 70N × 0.2s from behind or
100N × 0.2s from the front and takes steps under the pushes in the
range of [200N,300N] × 0.2s. Interestingly, our system can create
forward and backward walks by applying a constant push of 40N
from behind and from the front, respectively.

In addition to the control fragments constructed using the method
proposed by Liu et al. [2016], our scheduling scheme can incorpo-
rate other types of control. To demonstrate the capability of our
method, we replace all of the control fragments for standing in the
push-recovery task with a QP-based (Quadratic Programming) bal-
ance controller and learn a new scheduler from this mixed action
set of 109 control fragments. The new balance controller is imple-
mented in the same way as described in Macchietto et al. [2009],
except that the reference angular momentum is zero. The new
scheduler checks the state of simulation every 0.1s and determines
whether the character should take steps. We find that this balance
controller is more robust than the feedback-augmented control frag-
ments learned with Liu et al. [2016] in terms of maintaining in-place
standing. As shown in the supplementary video, the character can
tolerate a push of 100N×0.2s from behind without stepping under
the control of this new scheduler, while it has to step forward in the
same situation with the old scheduler constructed with control frag-
ments from Liu et al. [2016]. When a larger push is applied, the new
scheduler still allows the character to take steps to regain balance.

5.2.5 Breakdancing. The character learns two breakdance
stunts: a jump flip and a swipe movement. The user can interactively

Fig. 9. The hierarchical scheduler that allows the breakdancer to recover
immediately from a fall (Section 5.2.5). Each rounded rectangle represents
a control fragment. The learned blue scheduler maintains the control frag-
ments from the breakdance. It is considered as a special control fragment by
the orange scheduler at the higher level. The orange scheduler also main-
tains a number of ordinary control fragments from the sitting up motion. At
runtime, the orange scheduler picks a control fragment to execute according
to the current state of the simulation, x. If the blue scheduler is selected,
it automatically executes a blue control fragment according to x and re-
turns the corresponding reward. The tracking penalty in the reward function
(Equation (5)) is not used by the learned blue scheduler at this stage.

select one of the movements at runtime, and the character will try to
perform the selected movement repeatedly until the user selection
changes. We use two reference motion clips for this task, each
containing a short preparation movement followed by one of the
stunts. The action set includes 146 control fragments in total. The
task parameter U = {A0, A1} consists of two subsets of preferred
actions, where A0 contains the airborne phase of the jump flip, and
A1 contains the swipes of the swipe movement. The value of u ∈ U
is thus either 0 or 1. The task reward Etask is set to zero for this task.
Instead, we give strong preference to the selected stunt by setting
dp = 2.0 in the preference term of Equation (7). The feedback
threshold max is set to 2.0 radians. Without any predefined
transition, the learned scheduler responds to a user selection by
finishing the current stunt, taking the preparation movement of the
target stunt, and performing the new movement repeatedly.

Both of the breakdance stunts are highly dynamic movements.
Although the character can perform each movement tens of times
under the control of the learned scheduler, we find that it occasion-
ally fails and falls on the ground. After a fall, the character struggles
for a few seconds before it is able to stand up and continue break-
dancing. This sequence of actions is not natural looking. To mitigate
this problem, we incorporate a sitting-up motion to help the char-
acter resume dancing quickly after falling. Specifically, we treat the
scheduler learned earlier for breakdancing as a special control frag-
ment and combine it with 35 ordinary control fragments from the
sitting-up motion to create a hybrid action set. A new, hierarchical
scheduler is learned using this hybrid action set, as shown in Fig-
ure 9, with the preference term of the reward function penalizing the
sitting-up control fragments. With the new scheduler, the character
can sit up immediately after falling and start to breakdance again.

5.3 Experiments on Implementation Choices

In this section, we review and test some of the implementation
decisions that we made in learning these schedulers.

5.3.1 State Vector. Inspired by Liu et al. [2016], we choose a
few high-level features to represent the state of the simulation. Our
results indicate that this compact representation is applicable to a
wide range of control tasks. However, our learning algorithm does
not exclude the use of other state representations. For example, we

ACM Transactions on Graphics, Vol. 36, No. 3, Article 29, Publication date: June 2017.

Learning to Schedule Control Fragments for Physics-Based Characters Using Deep Q-Learning • 29:11

Fig. 10. Learning curves of the walking-on-a-ball task with different state
vectors. Blue: Learning with the selected features as described in Section 4.1.
Green: Learning with the positions and linear velocities of every rigid body
as state vectors. Red: Learning without the environmental state.

can learn successful schedulers for the ball walking task and the
bango board balancing task by replacing the state vector, sm, with
a vector capturing the positions and linear velocities of all of the
rigid bodies in the character model. Given that our character model
consists of 20 rigid bodies, the dimension of the new state space S
is 126, including the 6-DoF environmental state vectors, se, for each
of the two tasks. Figure 10 shows the learning process for the ball
walking task in this new state space using a green curve. Compared
with the learning process using the compact state vector, this new
learning process benefits from the additional information provided
by the new state vector and converges at a higher average Q-value,
indicating that the new scheduler takes less out-of-sequence actions
than the original scheduler, although the learning process takes
longer to reach such a scheduler due to the extra computational cost
(Table I).

The environmental state se is important for tasks involving mov-
ing objects. For example, we cannot learn a successful scheduler
for the ball walking task if se is excluded from the state vector. As
shown in Figure 10 using a red curve, the learning process stops at
a low average Q-value, and the character can only balance on the
ball for 2s under the control of the learned scheduler.

5.3.2 Immediate Reward vs. Delayed Reward. Our learning
method associates an immediate reward for every state during the
learning process, which is an intuitive implementation choice for
the tasks tested in this article. Without modifying the learning algo-
rithm, we can also learn successful schedulers for the tasks that are
defined with delayed rewards only given to the terminal states. To
demonstrate this, we test a new ball walking task where the goal of
the character is to stay on the ball as long as possible. The task pa-
rameter set U is empty for this task. Instead of using the immediate
reward of Equation (5), we give a constant reward R0 = 5 to every
other state except the terminal states when the character falls off the
ball, for which a penalty Rfail = −5 is applied. Figure 11 depicts
the learning process for this special task. The character walks stably
on the ball under the control of the learned scheduler, although the
moving direction often changes because keeping that constant is
not a part of the reward function.

Fig. 11. Learning curve of the walking-on-a-ball task with delayed reward.

6. DISCUSSION

In this article, we have demonstrated that the robustness of tracking
control can be dramatically improved by reordering the control frag-
ments when necessary, which enables the robust control of a wide
range of behaviors and control tasks. Many of the behaviors tested
in this article, such as walking on a ball, balancing on a bongo board,
and skateboarding, cannot be robustly controlled by the previous
time-indexed approach proposed by Liu and his colleagues [2016].
The instability and disturbances in dynamic environments cause
these controllers to fail. In addition, the tasks such as push-recovery
on the ground and on the bongo board cannot be accomplished
without the scheduling algorithm.

We train our schedulers to maintain the reference timing of the
input tracking controllers most of the time, which is crucial for the
motion quality. Both the tracking penalty term of Equation (6) and
the tracking exploration strategy used in the learning process play
an important role in achieving this goal. For example, our system
can learn a scheduler to accomplish the running task without the
tracking penalty term, but the resultant forward run is quite jerky
because the control fragments from the turns are often executed,
given that they are similar to their counterparts from the forward
run. The tracking penalty term provides an effective constraint in this
situation to remove the ambiguity between similar control fragments
and improve the motion quality.

The tracking exploration strategy effectively maintains a portion
of in-sequence transition tuples in the sample set, which biases the
training toward the reference sequence of the control fragments.
This strategy may not be necessary when a task has a small action
set, which is the case for the bongo board balancing task. As shown
in Figure 3(a), using the random exploration strategy alone can
eventually achieve a good enough result after more learning steps.
However, for a task having a larger action set, such as skateboarding
and running, the random exploration is too inefficient and ends in
a local optimum as indicated in Figure 3. In this case, the out-of-
sequence control fragments are often selected, degrading the motion
quality.

Our method can only take actions from the predefined action set.
This restriction limits the possible responses to disturbances. When
the character encounters large perturbations, it may take an action
that is not natural because there is no more appropriate action in the
available action set. For example, when the character skateboards
over bumps, it extends its left foot to keep balance. This motion is

ACM Transactions on Graphics, Vol. 36, No. 3, Article 29, Publication date: June 2017.

29:12 • L. Liu and J. Hodgins

actually a part of the push-off-the-ground action. A human skate-
boarder would more likely try to regain balance with a hip or ankle
strategy executed with both feet on the board—an action that is
not contained in the action set. This problem can be mitigated by
adding missing control fragments into the action set and rerunning
the learning process. Predicting the necessary missing actions us-
ing an active learning method such as Cooper et al. [2007] is an
interesting topic for further investigation.

The action sets of the tasks presented in this article all consist
of less than 150 control fragments. Our medium-sized Q-network
structure that contains two 300-unit hidden layers works well for all
of these tasks. We expect that incorporating more control fragments
into a single action set will require a more complicated network
structure, and the learning method will have to be adjusted to effec-
tively train such networks.

When applicable, we always use a compact representation of
the simulation state and a simple network structure to achieve fast
ofline learning and online performance. The success of the tasks
demonstrated in this article indicates that the selected features ef-
fectively capture the important information for a wide range of tasks.
In addition, the experiments in Section 5.3.1 demonstrate that our
medium-sized network also works well with the high-dimensional
state representation that captures the raw states of the rigid bodies.
The extra information can help the learning algorithm find a better
scheduler, although learning time increases and performance de-
grades because of the computation caused by the extra dimensions.
We expect that such a simple network structure can be generalized
well to other tasks which can be described using only the informa-
tion of the character. For the tasks where the character interacts with
a complex environment, such as running over uneven terrain [Peng
et al. 2016], fully utilizing the capability of deep learning algorithms
and directly extracting high-level features of the environment will
be crucial to the learning of successful control policies. We would
like to explore in this direction in future research.

Switching to an out-of-sequence control fragment often causes
discontinuous control signals. The physics of the simulation
smooths out such discontinuities but may produce abrupt move-
ment when the gap between two successive control fragments is too
large. This problem partially explains the necessity of referring to
the original timing. Blending the control from multiple control frag-
ments with a kinematics-based method such as Lee et al. [2010b] is
a possible way to solve this problem and to achieve rapid response
to user interaction, although a specific interpolation method such as
the one investigated in da Silva et al. [2009] may be needed.

When applicable, the basins of attraction of the feedback policies
of all the control fragments can be viewed as a discretization of the
state space near the reference motion. From this perspective, learn-
ing a scheduler is equivalent to training a nonlinear classifier that
implicitly determines the decision boundary. Traditional machine
learning algorithms, such as the Support Vector Machine (SVM)
and the k-nearest neighbor algorithm, may also be used to solve the
problem, although obtaining well-labeled training data and tuning
the distance metric may be challenging.

Our schedulers pick an action every 0.1s at runtime, which is a
simple implementation choice suggested by Liu et al. [2016] and
is shown to be effective for all the tasks discussed in this article.
In practice, this 0.1-s interval makes the input states to a scheduler
separate well, as shown in Figure 12, and thus facilitates the learning
of the schedulers. If more information is available, the segmentation
of a motion may be further improved by taking into account the
critical moments such as when the character’s feet or hands contact
the ground in a backflip. In future research, we are also interested
in learning the schedulers that plan the duration of actions as well,

Fig. 12. The first two principal components of the states input to the learned
scheduler in the bongo board balancing task. The color of each data point
represents the action taken at the corresponding state.

which can be seen as a special case of the Semi-Markov Decision
Process [Sutton et al. 1998].

A number of recent works also learn neural-network-based con-
trol policies that directly map a state to continuous control sig-
nals for actuators [Levine and Koltun 2013, 2014; Tan et al. 2014;
Mordatch et al. 2015]. The continuous action spaces necessitate the
use of policy search or policy optimization. The control fragments
used in our system can be viewed as an additional layer of the
Q-network. Such a combined neural network is equivalent to the
networks learned by those methods. In this sense, we divide a hard
control problem into two subproblems, each of which is easier to
solve than the combined problem.

ACKNOWLEDGMENTS

We would like to thank all the anonymous reviewers for their valu-
able comments and suggestions. We thank Stelian Coros for the dis-
cussions in the early stage of this project. We thank Moshe Mahler
and Kyna McIntosh for their help in creating the final demo.

REFERENCES

Yeuhi Abe and Jovan Popovı́c. 2011. Simulating 2D gaits with a phase-
indexed tracking controller. IEEE Comput. Graph. Appl. 31, 4 (July 2011),
22–33.

Mazen Al Borno, Martin de Lasa, and Aaron Hertzmann. 2013. Trajec-
tory optimization for full-body movements with complex contacts. IEEE
Trans. Visual. Comput. Graph. 19, 8 (Aug 2013), 1405–1414.

Mazen Al Borno, Eugene Fiume, Aaron. Hertzmann, and Martin de Lasa.
2014. Feedback control for rotational movements in feature space. Com-
put. Graph. Forum 33, 2 (May 2014), 225–233.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J.
Goodfellow, Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio.
2012. Theano: New features and speed improvements. Deep Learning
and Unsupervised Feature Learning NIPS 2012 Workshop.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan
Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2010. Theano: A CPU and GPU math expression com-
piler. In Proceedings of the Python for Scientific Computing Conference
(SciPy). Oral Presentation.

ACM Transactions on Graphics, Vol. 36, No. 3, Article 29, Publication date: June 2017.

Learning to Schedule Control Fragments for Physics-Based Characters Using Deep Q-Learning • 29:13

Brian G. Buss, Alireza Ramezani, Kaveh Akbari Hamed, Brent A. Griffin,
Kevin S. Galloway, and Jessy W. Grizzle. 2014. Preliminary walking ex-
periments with underactuated 3D bipedal robot MARLO. In Proceedings
of the 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’14). 2529–2536.

Seth Cooper, Aaron Hertzmann, and Zoran Popović. 2007. Active learning
for real-time motion controllers. ACM Trans. Graph. 26, 3 (July 2007),
Article 5.

Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2009. Ro-
bust task-based control policies for physics-based characters. ACM Trans.
Graph. 28, 5 (Dec. 2009), Article 170, 170:1–170:9.

Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2010. Gen-
eralized biped walking control. ACM Trans. Graph. 29, 4 (July 2010),
Article 130, 130:1–130:9 pages.

Marco da Silva, Frédo Durand, and Jovan Popović. 2009. Linear Bellman
combination for control of character animation. ACM Trans. Graph. 28,
3 (July 2009), Article 82, 82:1–82:10.

Thomas Geijtenbeek and Nicolas Pronost. 2012. Interactive character anima-
tion using simulated physics: A state-of-the-art review. Comput. Graph.
Forum 31, 8 (Dec. 2012), 2492–2515.

Gaël Guennebaud, Benoı̂t Jacob, and others. 2010. Eigen v3. Retrieved from
http://eigen.tuxfamily.org.

Sehoon Ha and C. Karen Liu. 2014. Iterative training of dynamic skills in-
spired by human coaching techniques. ACM Trans. Graph. 34, 1, Article 1
(Dec. 2014), 1:1–1:11.

Perttu Hämäläinen, Joose Rajamäki, and C. Karen Liu. 2015. Online control
of simulated humanoids using particle belief propagation. ACM Trans.
Graph. 34, 4, Article 81 (July 2015), 81:1–81:13.

Sumit Jain and C. Karen Liu. 2011. Controlling physics-based characters
using soft contacts. ACM Trans. Graph. 30, 6 (Dec. 2011), Article 163,
163:1–163:10.

Taesoo Kwon and Jessica Hodgins. 2010. Control systems for human run-
ning using an inverted pendulum model and a reference motion capture
sequence. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA’10). 129–138.

Taesoo Kwon and Jessica K. Hodgins. 2017. Momentum-mapped inverted
pendulum models for controlling dynamic human motions. ACM Trans.
Graph. 36, 1, Article 10 (Jan. 2017), 14 pages.

Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010a. Data-driven biped
control. ACM Trans. Graph. 29, 4, Article 129 (July 2010), 129:1–129:8.

Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran
Popović. 2010b. Motion fields for interactive character locomotion. ACM
Trans. Graph. 29, 6, Article 138 (Dec. 2010), 138:1–138:8.

Sergey Levine and Vladlen Koltun. 2013. Guided policy search. In Pro-
ceedings of the 30th International Conference on Machine Learning
(ICML’13).

Sergey Levine and Vladlen Koltun. 2014. Learning complex neural net-
work policies with trajectory optimization. In Proceedings of the 31st
International Conference on Machine Learning (ICML’14).

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2015. Con-
tinuous control with deep reinforcement learning. CoRR abs/1509.02971
(2015). http://arxiv.org/abs/1509.02971

Chenggang Liu, Christopher G. Atkeson, and Jianbo Su. 2013. Biped walk-
ing control using a trajectory library. Robotica 31, 2 (March 2013), 311–
322.

Libin Liu, Michiel van de Panne, and KangKang Yin. 2016. Guided learning
of control graphs for physics-based characters. ACM Trans. Graph. 35, 3
(May 2016), Article 29, 29:1–29:14.

Libin Liu, KangKang Yin, and Baining Guo. 2015. Improving sampling-
based motion control. Comput. Graph. Forum 34, 2 (2015), 415–423.

Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei
Xu. 2010. Sampling-based contact-rich motion control. ACM Trans.
Graph. 29, 4 (2010), Article 128.

Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. 2013. Simulation
and control of skeleton-driven soft body characters. ACM Trans. Graph.
32, 6 (2013), Article 215.

Adriano Macchietto, Victor Zordan, and Christian R. Shelton. 2009. Mo-
mentum control for balance. ACM Trans. Graph. 28, 3 (2009).

James McCann and Nancy Pollard. 2007. Responsive characters from mo-
tion fragments. ACM Trans. Graph. 26, 3 (July 2007), Article 6.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. 2015. Human-level control through
deep reinforcement learning. Nature 518, 7540 (26 Feb 2015), 529–533.
http://dx.doi.org/10.1038/nature14236. Letter.

Igor Mordatch, Martin de Lasa, and Aaron Hertzmann. 2010. Robust
physics-based locomotion using low-dimensional planning. ACM Trans.
Graph. 29, 4 (July 2010), Article 71, 71:1–71:8.

Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, and
Emanuel V. Todorov. 2015. Interactive control of diverse complex charac-
ters with neural networks. In Advances in Neural Information Processing
Systems 28. Curran Associates, Inc., 3114–3122.

Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012. Discovery of
complex behaviors through contact-invariant optimization. ACM Trans.
Graph. 31, 4 (July 2012), Article 43, 43:1–43:8.

Uldarico Muico, Yongjoon Lee, Jovan Popović, and Zoran Popović. 2009.
Contact-aware nonlinear control of dynamic characters. ACM Trans.
Graph. 28, 3 (2009).

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory
Fearon, Alessandro De Maria, Vedavyas Panneershelvam, Mustafa
Suleyman, Charles Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih,
Koray Kavukcuoglu, and David Silver. 2015. Massively parallel methods
for deep reinforcement learning. In Deep Learning Workshop, Interna-
tional Conference on Machine Learning (ICML’15).

Jun Nakanishi, Jun Morimoto, Gen Endo, Gordon Cheng, Stefan Schaal,
and Mitsuo Kawato. 2004. Learning from demonstration and adaptation
of biped locomotion. Robot. Auton. Syst. 47, 23 (2004), 79–91.

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2015. Dynamic
terrain traversal skills using reinforcement learning. ACM Trans. Graph.
34, 4, Article 80 (July 2015), 80:1–80:11.

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2016. Terrain-
adaptive locomotion skills using deep reinforcement learning. ACM Trans.
Graph. 35, 4 (July 2016).

Kwang Won Sok, Manmyung Kim, and Jehee Lee. 2007. Simulating biped
behaviors from human motion data. ACM Trans. Graph. 26, 3 (2007),
Article 107.

Freek Stulp, Evangelos A. Theodorou, and Stefan Schaal. 2012. Reinforce-
ment learning with sequences of motion primitives for robust manipula-
tion. IEEE Trans. Robot. 28, 6 (Dec 2012), 1360–1370.

Richard S. Sutton, Doina Precup, and Satinder P. Singh. 1998. Intra-option
learning about temporally abstract actions. In Proceedings of the 15th
International Conference on Machine Learning (ICML’98). 556–564.

Jie Tan, Yuting Gu, C. Karen Liu, and Greg Turk. 2014. Learning bicycle
stunts. ACM Trans. Graph. 33, 4 (July 2014), Article 50, 50:1–50:12.

Jie Tan, C. Karen Liu, and Greg Turk. 2011. Stable proportional-derivative
controllers. IEEE Comput. Graph. Appl. 31, 4 (2011), 34–44.

Tijmen Tieleman and Geoff Hinton. 2012. Lecture 6.5—RmsProp: Divide
the gradient by a running average of its recent magnitude. COURSERA:
Neural Networks for Machine Learning.

ACM Transactions on Graphics, Vol. 36, No. 3, Article 29, Publication date: June 2017.

http://eigen.tuxfamily.org
http://arxiv.org/abs/1509.02971
http://dx.doi.org/10.1038/nature14236

29:14 • L. Liu and J. Hodgins

Adrien Treuille, Yongjoon Lee, and Zoran Popović. 2007. Near-optimal
character animation with continuous control. ACM Trans. Graph. 26, 3
(July 2007), Article 7.

Hado van Hasselt, Arthur Guez, and David Silver. 2015. Deep reinforce-
ment learning with double Q-learning. CoRR abs/1509.06461 (2015).
http://arxiv.org/abs/1509.06461

Kevin Wampler and Zoran Popović. 2009. Optimal gait and form for animal
locomotion. ACM Trans. Graph. 28, 3 (2009), Article 60.

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. 2010. Optimizing
walking controllers for uncertain inputs and environments. ACM Trans.
Graph. 29, 4, Article 73 (July 2010), 73:1–73:8.

Christopher John Cornish Hellaby Watkins. 1989. Learning from De-
layed Rewards. Ph.D. dissertation. King’s College, Cambridge, UK.
http://www.cs.rhul.ac.uk/ chrisw/new_thesis.pdf.

Yuting Ye and C. Karen Liu. 2010. Optimal feedback control for character
animation using an abstract model. ACM Trans. Graph. 29, 4, Article 74
(July 2010), 74:1–74:9.

KangKang Yin, Kevin Loken, and Michiel van de Panne. 2007. SIMBICON:
Simple biped locomotion control. ACM Trans. Graph. 26, 3 (2007), Arti-
cle 105.

Victor Zordan, David Brown, Adriano Macchietto, and KangKang Yin.
2014. Control of rotational dynamics for ground and aerial behav-
ior. IEEE Trans. Visual. Comput. Graph. 20, 10 (Oct. 2014), 1356–
1366.

Received September 2016; revised February 2017; accepted March 2017

ACM Transactions on Graphics, Vol. 36, No. 3, Article 29, Publication date: June 2017.

http://arxiv.org/abs/1509.06461
http://www.cs.rhul.ac.uk/ ignorespaces chrisw/new_thesis.pdf

